Matthew Kopec, Meica Magnani, Vance Ricks, R. Torosyan, John Basl, Nicholas Miklaucic, Felix Muzny, R. Sandler, Christopher D. Wilson, Adam Wisniewski-Jensen, Cora Lundgren, Ryan Baylon, Kevin Mills, Marcy Wells
{"title":"The effectiveness of embedded values analysis modules in Computer Science education: An empirical study","authors":"Matthew Kopec, Meica Magnani, Vance Ricks, R. Torosyan, John Basl, Nicholas Miklaucic, Felix Muzny, R. Sandler, Christopher D. Wilson, Adam Wisniewski-Jensen, Cora Lundgren, Ryan Baylon, Kevin Mills, Marcy Wells","doi":"10.1177/20539517231176230","DOIUrl":null,"url":null,"abstract":"Embedding ethics modules within computer science courses has become a popular response to the growing recognition that computer science programs need to better equip their students to navigate the ethical dimensions of computing technologies such as artificial intelligence, machine learning, and big data analytics. However, the popularity of this approach has outpaced the evidence of its positive outcomes. To help close that gap, this empirical study reports positive results from Northeastern University's program that embeds values analysis modules into computer science courses. The resulting data suggest that such modules have a positive effect on students’ moral attitudes and that students leave the modules believing they are more prepared to navigate the ethical dimensions they will likely face in their eventual careers. Importantly, these gains were accomplished at an institution without a philosophy doctoral program, suggesting this strategy can be effectively employed by a wider range of institutions than many have thought.","PeriodicalId":47834,"journal":{"name":"Big Data & Society","volume":"10 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2022-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data & Society","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/20539517231176230","RegionNum":1,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
Embedding ethics modules within computer science courses has become a popular response to the growing recognition that computer science programs need to better equip their students to navigate the ethical dimensions of computing technologies such as artificial intelligence, machine learning, and big data analytics. However, the popularity of this approach has outpaced the evidence of its positive outcomes. To help close that gap, this empirical study reports positive results from Northeastern University's program that embeds values analysis modules into computer science courses. The resulting data suggest that such modules have a positive effect on students’ moral attitudes and that students leave the modules believing they are more prepared to navigate the ethical dimensions they will likely face in their eventual careers. Importantly, these gains were accomplished at an institution without a philosophy doctoral program, suggesting this strategy can be effectively employed by a wider range of institutions than many have thought.
期刊介绍:
Big Data & Society (BD&S) is an open access, peer-reviewed scholarly journal that publishes interdisciplinary work principally in the social sciences, humanities, and computing and their intersections with the arts and natural sciences. The journal focuses on the implications of Big Data for societies and aims to connect debates about Big Data practices and their effects on various sectors such as academia, social life, industry, business, and government.
BD&S considers Big Data as an emerging field of practices, not solely defined by but generative of unique data qualities such as high volume, granularity, data linking, and mining. The journal pays attention to digital content generated both online and offline, encompassing social media, search engines, closed networks (e.g., commercial or government transactions), and open networks like digital archives, open government, and crowdsourced data. Rather than providing a fixed definition of Big Data, BD&S encourages interdisciplinary inquiries, debates, and studies on various topics and themes related to Big Data practices.
BD&S seeks contributions that analyze Big Data practices, involve empirical engagements and experiments with innovative methods, and reflect on the consequences of these practices for the representation, realization, and governance of societies. As a digital-only journal, BD&S's platform can accommodate multimedia formats such as complex images, dynamic visualizations, videos, and audio content. The contents of the journal encompass peer-reviewed research articles, colloquia, bookcasts, think pieces, state-of-the-art methods, and work by early career researchers.