V. Tambe, G. Bansod, S. Khurana, Shardul Khandekar
{"title":"Reliability and availability of IoT devices in resource constrained environments","authors":"V. Tambe, G. Bansod, S. Khurana, Shardul Khandekar","doi":"10.1108/ijqrm-09-2021-0334","DOIUrl":null,"url":null,"abstract":"PurposeThe purpose of this study is to test the Internet of things (IoT) devices with respect to reliability and quality.Design/methodology/approachIn this paper, the authors have presented the analysis on design metrics such as perception, communication and computation layers for a constrained environment. In this paper, based on their literature survey, the authors have also presented a study that shows multipath routing is more efficient than single-path, and the retransmission mechanism is not preferable in an IoT environment.FindingsThis paper discusses the reliability of various layers of IoT subject methodologies used in those layers. The authors ran performance tests on Arduino nano and raspberry pi using the AES-128 algorithm. It was empirically determined that the time required to process a message increases exponentially and is more than what benchmark time estimates as the message size is increased. From these results, the authors can accurately determine the optimal size of the message that can be processed by an IoT system employing controllers, which are running 8-bit or 64-bit architectures.Originality/valueThe authors have tested the performance of standard security algorithms on different computational architectures and discuss the implications of the results. Empirical results demonstrate that encryption and decryption times increase nonlinearly rather than linearly as message size increases.","PeriodicalId":14193,"journal":{"name":"International Journal of Quality & Reliability Management","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2022-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quality & Reliability Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijqrm-09-2021-0334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 2
Abstract
PurposeThe purpose of this study is to test the Internet of things (IoT) devices with respect to reliability and quality.Design/methodology/approachIn this paper, the authors have presented the analysis on design metrics such as perception, communication and computation layers for a constrained environment. In this paper, based on their literature survey, the authors have also presented a study that shows multipath routing is more efficient than single-path, and the retransmission mechanism is not preferable in an IoT environment.FindingsThis paper discusses the reliability of various layers of IoT subject methodologies used in those layers. The authors ran performance tests on Arduino nano and raspberry pi using the AES-128 algorithm. It was empirically determined that the time required to process a message increases exponentially and is more than what benchmark time estimates as the message size is increased. From these results, the authors can accurately determine the optimal size of the message that can be processed by an IoT system employing controllers, which are running 8-bit or 64-bit architectures.Originality/valueThe authors have tested the performance of standard security algorithms on different computational architectures and discuss the implications of the results. Empirical results demonstrate that encryption and decryption times increase nonlinearly rather than linearly as message size increases.
期刊介绍:
In today''s competitive business and industrial environment, it is essential to have an academic journal offering the most current theoretical knowledge on quality and reliability to ensure that top management is fully conversant with new thinking, techniques and developments in the field. The International Journal of Quality & Reliability Management (IJQRM) deals with all aspects of business improvements and with all aspects of manufacturing and services, from the training of (senior) managers, to innovations in organising and processing to raise standards of product and service quality. It is this unique blend of theoretical knowledge and managerial relevance that makes IJQRM a valuable resource for managers striving for higher standards.Coverage includes: -Reliability, availability & maintenance -Gauging, calibration & measurement -Life cycle costing & sustainability -Reliability Management of Systems -Service Quality -Green Marketing -Product liability -Product testing techniques & systems -Quality function deployment -Reliability & quality education & training -Productivity improvement -Performance improvement -(Regulatory) standards for quality & Quality Awards -Statistical process control -System modelling -Teamwork -Quality data & datamining