Electrical conductivity of poly (L lactic acid) and poly (3-hydroxybutyrate) composites filled with galvanostatically produced copper powder

IF 0.8 4区 工程技术 Q4 ENGINEERING, CHEMICAL Hemijska Industrija Pub Date : 2018-10-15 DOI:10.2298/HEMIND180530020J
Z. Janković, M. Pavlovic, Marijana R. Pantović Pavlović, N. Nikolić, V. Zečević, M. Pavlović
{"title":"Electrical conductivity of poly (L lactic acid) and poly (3-hydroxybutyrate) composites filled with galvanostatically produced copper powder","authors":"Z. Janković, M. Pavlovic, Marijana R. Pantović Pavlović, N. Nikolić, V. Zečević, M. Pavlović","doi":"10.2298/HEMIND180530020J","DOIUrl":null,"url":null,"abstract":"This manuscript presents experimental studies of composite materials based on poly (L lactic acid) (PLLA) and poly (3-hydroxybutyrate) (PHB) matrices filled with electrolytic copper powder, having a very high dendritic structure. Volume fractions of the copper powder used as filler in all prepared composites were varied in the range 0.5-6.0 vol.%. Samples were prepared by hot moulding injection at 170 °C. Influence of particle size and morphology, as well as the influence of matrix type on conductivity and percolation threshold of the obtained composites were examined. Characterization included: electrical conductivity measurements using AC impedance spectroscopy (IS), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and Fourier-transform Infrared spectroscopy (FTIR). Presence of three-dimensional conductive pathways was confirmed. The obtained percolation thresholds of 2.83 vol.% for PLLA and 3.13 vol.% for PHB composites were measured, which is about three times lower than the ones stated in the literature for similar composites. This property is ascribed to different morphologies of the filler used in the present investigation.","PeriodicalId":12913,"journal":{"name":"Hemijska Industrija","volume":"72 1","pages":"285-292"},"PeriodicalIF":0.8000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hemijska Industrija","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2298/HEMIND180530020J","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 3

Abstract

This manuscript presents experimental studies of composite materials based on poly (L lactic acid) (PLLA) and poly (3-hydroxybutyrate) (PHB) matrices filled with electrolytic copper powder, having a very high dendritic structure. Volume fractions of the copper powder used as filler in all prepared composites were varied in the range 0.5-6.0 vol.%. Samples were prepared by hot moulding injection at 170 °C. Influence of particle size and morphology, as well as the influence of matrix type on conductivity and percolation threshold of the obtained composites were examined. Characterization included: electrical conductivity measurements using AC impedance spectroscopy (IS), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and Fourier-transform Infrared spectroscopy (FTIR). Presence of three-dimensional conductive pathways was confirmed. The obtained percolation thresholds of 2.83 vol.% for PLLA and 3.13 vol.% for PHB composites were measured, which is about three times lower than the ones stated in the literature for similar composites. This property is ascribed to different morphologies of the filler used in the present investigation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用恒电流制备的铜粉填充聚乳酸和聚3-羟基丁酸复合材料的电导率
本文介绍了以高枝晶结构的聚乳酸(PLLA)和聚3-羟基丁酸酯(PHB)为基体填充电铜粉的复合材料的实验研究。所制备的复合材料中作为填料的铜粉的体积分数在0.5 ~ 6.0 vol.%范围内变化。样品在170℃下进行热成型注射。考察了颗粒大小、形貌以及基体类型对复合材料电导率和渗透阈值的影响。表征包括:电导率测量使用交流阻抗谱(IS),扫描电子显微镜(SEM),能量色散x射线光谱(EDS)和傅里叶变换红外光谱(FTIR)。三维导电通路的存在得到了证实。测得PLLA和PHB复合材料的渗透阈值分别为2.83 vol.%和3.13 vol.%,比文献中类似复合材料的渗透阈值低约3倍。这种性质是由于在本研究中使用的填料的不同形态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Hemijska Industrija
Hemijska Industrija 工程技术-工程:化工
CiteScore
1.60
自引率
11.10%
发文量
12
审稿时长
6-12 weeks
期刊介绍: The Journal Hemijska industrija (abbreviation Hem. Ind.) is publishing papers in the field of Chemical Engineering (Transport phenomena; Process Modeling, Simulation and Optimization; Thermodynamics; Separation Processes; Reactor Engineering; Electrochemical Engineering; Petrochemical Engineering), Biochemical Engineering (Bioreactors; Protein Engineering; Kinetics of Bioprocesses), Engineering of Materials (Polymers; Metal materials; Non-metal materials; Biomaterials), Environmental Engineeringand Applied Chemistry. The journal is published bimonthly by the Association of Chemical Engineers of Serbia (a member of EFCE - European Federation of Chemical Engineering). In addition to professional articles of importance to industry, scientific research papers are published, not only from our country but from all over the world. It also contains topics such as business news, science and technology news, information on new apparatus and equipment, and articles on environmental protection.
期刊最新文献
Transport properties and permeability of textile materials Water vapour permeability of nylon pantyhose Looking backward to move forward in perioperative pain management? Controllable arrangement of integrated obstacles in silicon microchannels etched in 25 wt.% TMAX Microstructure as an essential aspect of EN AW 7075 aluminum alloy quality influenced by electromagnetic field during continuous casting process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1