Amir Ajoolabady, J. Tuomilehto, Gregory H. Lip, D. Klionsky, Jun Ren
{"title":"Deciphering the role of autophagy in heart failure","authors":"Amir Ajoolabady, J. Tuomilehto, Gregory H. Lip, D. Klionsky, Jun Ren","doi":"10.4103/2470-7511.320324","DOIUrl":null,"url":null,"abstract":"Heart failure (HF) refers to a progressive pathological condition when cardiac muscles fail to pump adequate blood supply (cardiac output) to meet the metabolic demand of the body. Among various cellular and molecular mechanisms identified for the onset and progression of HF, autophagy dysregulation is increasingly getting recognized. Autophagy is a natural cellular process that is observed in almost all eukaryotic cells. Autophagy removes damaged/long-lived organelles, protein aggregates, and unwanted cellular compomemts via forming autophagosomes then fusing with lysosomes. Although mild-to-moderate induction of autophagy is deemed cytoprotective and adaptive, excessive or unchecked induction of autophagy can be detrimental and maladaptive. Both adaptive and maladaptive autophagy play a vital role in the pathophysiology of HF. In the current review, we provide an overview of autophagy regulation in HF and possible strategies targeting autophagy for the management of HF.","PeriodicalId":52908,"journal":{"name":"Cardiology Plus","volume":"6 1","pages":"92 - 101"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiology Plus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/2470-7511.320324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 10
Abstract
Heart failure (HF) refers to a progressive pathological condition when cardiac muscles fail to pump adequate blood supply (cardiac output) to meet the metabolic demand of the body. Among various cellular and molecular mechanisms identified for the onset and progression of HF, autophagy dysregulation is increasingly getting recognized. Autophagy is a natural cellular process that is observed in almost all eukaryotic cells. Autophagy removes damaged/long-lived organelles, protein aggregates, and unwanted cellular compomemts via forming autophagosomes then fusing with lysosomes. Although mild-to-moderate induction of autophagy is deemed cytoprotective and adaptive, excessive or unchecked induction of autophagy can be detrimental and maladaptive. Both adaptive and maladaptive autophagy play a vital role in the pathophysiology of HF. In the current review, we provide an overview of autophagy regulation in HF and possible strategies targeting autophagy for the management of HF.