Utilization of organic Rankine cycles in a cogeneration system with a high-temperature gas-cooled nuclear reactor – thermodynamic analysis

IF 0.8 Q4 THERMODYNAMICS Archives of Thermodynamics Pub Date : 2023-07-20 DOI:10.24425/ather.2021.137554
J. Jędrzejewski
{"title":"Utilization of organic Rankine cycles in a cogeneration system with a high-temperature gas-cooled nuclear reactor – thermodynamic analysis","authors":"J. Jędrzejewski","doi":"10.24425/ather.2021.137554","DOIUrl":null,"url":null,"abstract":"The paper presents results of a parametric analysis of a high-temperature nuclear-reactor cogeneration system. The aim was to investigate the power efficiency of the system generating heat for a high-temperature technological process and electricity in a Brayton cycle and additionally in organic Rankine cycles using R236ea and R1234ze as working fluids. The results of the analyses indicate that it is possible to combine a 100 MW high-temperature gas-cooled nuclear reactor with a technological process with the demand for heat ranging from 5 to 25 MW, where the required temperature of the process heat carrier is at the level of 650 ◦ C. Calculations were performed for various pressures of R236ea at the turbine inlet. The cogeneration system maximum power efficiency in the analysed cases ranges from ~35.5% to ~45.7% and the maximum share of the organic Rank-ine cycle systems in electric power totals from ~26.9% to ~30.8%. If such a system is used to produce electricity instead of conventional plants, carbon dioxide emissions can be reduced by about 216.03–147.42 kt/year depending on the demand for process heat, including the reduction achieved in the organic Rankine cycle systems by about 58.01–45.39 kt/year (in Poland).","PeriodicalId":45257,"journal":{"name":"Archives of Thermodynamics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Thermodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ather.2021.137554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

The paper presents results of a parametric analysis of a high-temperature nuclear-reactor cogeneration system. The aim was to investigate the power efficiency of the system generating heat for a high-temperature technological process and electricity in a Brayton cycle and additionally in organic Rankine cycles using R236ea and R1234ze as working fluids. The results of the analyses indicate that it is possible to combine a 100 MW high-temperature gas-cooled nuclear reactor with a technological process with the demand for heat ranging from 5 to 25 MW, where the required temperature of the process heat carrier is at the level of 650 ◦ C. Calculations were performed for various pressures of R236ea at the turbine inlet. The cogeneration system maximum power efficiency in the analysed cases ranges from ~35.5% to ~45.7% and the maximum share of the organic Rank-ine cycle systems in electric power totals from ~26.9% to ~30.8%. If such a system is used to produce electricity instead of conventional plants, carbon dioxide emissions can be reduced by about 216.03–147.42 kt/year depending on the demand for process heat, including the reduction achieved in the organic Rankine cycle systems by about 58.01–45.39 kt/year (in Poland).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有机朗肯循环在高温气冷核反应堆热电联产系统中的应用——热力学分析
本文介绍了高温核反应堆热电联产系统的参数分析结果。目的是研究高温工艺过程中产生热量的系统的功率效率和布雷顿循环以及使用R236ea和R1234ze作为工作流体的有机朗肯循环中的电力效率。分析结果表明,将100MW高温气冷核反应堆与对热量需求在5至25MW范围内的工艺过程相结合是可能的,其中工艺热载体的所需温度为650◦ C.对涡轮机入口处R236ea的各种压力进行了计算。在所分析的情况下,热电联产系统的最大功率效率在~35.5%-~45.7%之间,有机Rankine循环系统在电力中的最大份额在~26.9%-~30.8%之间。如果用这种系统代替传统工厂发电,二氧化碳排放量可减少约216.03–147.42 kt/年,具体取决于工艺热量的需求,包括有机朗肯循环系统减少约58.01–45.39 kt/年(在波兰)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Archives of Thermodynamics
Archives of Thermodynamics THERMODYNAMICS-
CiteScore
1.80
自引率
22.20%
发文量
0
期刊介绍: The aim of the Archives of Thermodynamics is to disseminate knowledge between scientists and engineers interested in thermodynamics and heat transfer and to provide a forum for original research conducted in Central and Eastern Europe, as well as all over the world. The journal encompass all aspect of the field, ranging from classical thermodynamics, through conduction heat transfer to thermodynamic aspects of multiphase flow. Both theoretical and applied contributions are welcome. Only original papers written in English are consider for publication.
期刊最新文献
Thermal simulation of a continuous casting process subjected to water-sprays cooling Reduction of carbon footprint from spark ignition power facilities by the dual approach Modeling of the internal combustion engine cooling system Challenges in operating and testing loop heat pipes in 500–700 K temperature ranges Simplified exergy analysis of ship heating systems with different heat carriers and with the recovery of waste heat
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1