Progress and perspectives of point cloud intelligence

Bisheng Yang, Nobert Haala, Zhen Dong
{"title":"Progress and perspectives of point cloud intelligence","authors":"Bisheng Yang, Nobert Haala, Zhen Dong","doi":"10.1080/10095020.2023.2175478","DOIUrl":null,"url":null,"abstract":"ABSTRACT With the rapid development of reality capture methods, such as laser scanning and oblique photogrammetry, point cloud data have become the third most important data source, after vector maps and imagery. Point cloud data also play an increasingly important role in scientific research and engineering in the fields of Earth science, spatial cognition, and smart cities. However, how to acquire high-quality three-dimensional (3D) geospatial information from point clouds has become a scientific frontier, for which there is an urgent demand in the fields of surveying and mapping, as well as geoscience applications. To address the challenges mentioned above, point cloud intelligence came into being. This paper summarizes the state-of-the-art of point cloud intelligence, with regard to acquisition equipment, intelligent processing, scientific research, and engineering applications. For this purpose, we refer to a recent project on the hybrid georeferencing of images and LiDAR data for high-quality point cloud collection, as well as a current benchmark for the semantic segmentation of high-resolution 3D point clouds. These projects were conducted at the Institute for Photogrammetry, the University of Stuttgart, which was initially headed by the late Prof. Ackermann. Finally, the development prospects of point cloud intelligence are summarized.","PeriodicalId":58518,"journal":{"name":"武测译文","volume":"26 1","pages":"189 - 205"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"武测译文","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1080/10095020.2023.2175478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

ABSTRACT With the rapid development of reality capture methods, such as laser scanning and oblique photogrammetry, point cloud data have become the third most important data source, after vector maps and imagery. Point cloud data also play an increasingly important role in scientific research and engineering in the fields of Earth science, spatial cognition, and smart cities. However, how to acquire high-quality three-dimensional (3D) geospatial information from point clouds has become a scientific frontier, for which there is an urgent demand in the fields of surveying and mapping, as well as geoscience applications. To address the challenges mentioned above, point cloud intelligence came into being. This paper summarizes the state-of-the-art of point cloud intelligence, with regard to acquisition equipment, intelligent processing, scientific research, and engineering applications. For this purpose, we refer to a recent project on the hybrid georeferencing of images and LiDAR data for high-quality point cloud collection, as well as a current benchmark for the semantic segmentation of high-resolution 3D point clouds. These projects were conducted at the Institute for Photogrammetry, the University of Stuttgart, which was initially headed by the late Prof. Ackermann. Finally, the development prospects of point cloud intelligence are summarized.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
点云智能的进展与展望
摘要随着激光扫描和倾斜摄影测量等现实捕捉方法的快速发展,点云数据已成为仅次于矢量地图和图像的第三大数据源。点云数据在地球科学、空间认知和智慧城市等领域的科学研究和工程中也发挥着越来越重要的作用。然而,如何从点云中获取高质量的三维地理空间信息已成为一个科学前沿,在测绘和地学应用领域都有迫切的需求。为了应对上述挑战,点云智能应运而生。本文综述了点云智能在采集设备、智能处理、科学研究和工程应用方面的最新进展。为此,我们参考了最近的一个项目,该项目涉及图像和激光雷达数据的混合地理参考,用于高质量点云收集,以及高分辨率3D点云语义分割的当前基准。这些项目是在斯图加特大学摄影测量研究所进行的,该研究所最初由已故的阿克曼教授领导。最后,对点云智能的发展前景进行了总结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Current and potential use of augmented reality in (geographic) citizen science projects: a survey Innovative remote sensing methodologies and applications in coastal and marine environments Glacier melt detection at different sites of Greenland ice sheet using dual-polarized Sentinel-1 images Estimating pedestrian traffic with Bluetooth sensor technology Tightly coupled multi-frequency PPP-RTK/INS integration model and its application in an urban environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1