Fahad Al Saadi;Alan Champneys;Annette Worthy;Ahmed Msmali
{"title":"Stationary and oscillatory localized patterns in ratio-dependent predator–prey systems","authors":"Fahad Al Saadi;Alan Champneys;Annette Worthy;Ahmed Msmali","doi":"10.1093/imamat/hxab018","DOIUrl":null,"url":null,"abstract":"Investigations are undertaken into simple predator–prey models with rational interaction terms in one and two spatial dimensions. Focusing on a case with linear interaction and saturation, an analysis for long domains in 1D is undertaken using ideas from spatial dynamics. In the limit that prey diffuses much more slowly than predator, the Turing bifurcation is found to be subcritical, which gives rise to localized patterns within a Pomeau pinning parameter region. Parameter regions for localized patterns and isolated spots are delineated. For a realistic range of parameters, a temporal Hopf bifurcation of the balanced equilibrium state occurs within the localized-pattern region. Detailed spectral computations and numerical simulations reveal how the Hopf bifurcation is inherited by the localized structures at nearby parameter values, giving rise to both temporally periodic and chaotic localized patterns. Simulation results in 2D confirm the onset of complex spatio-temporal patterns within the corresponding parameter regions. The generality of the results is confirmed by showing qualitatively the same bifurcation structure within a similar model with quadratic interaction and saturation. The implications for ecology are briefly discussed.","PeriodicalId":56297,"journal":{"name":"IMA Journal of Applied Mathematics","volume":"86 1","pages":"808-827"},"PeriodicalIF":1.4000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9514760/","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4
Abstract
Investigations are undertaken into simple predator–prey models with rational interaction terms in one and two spatial dimensions. Focusing on a case with linear interaction and saturation, an analysis for long domains in 1D is undertaken using ideas from spatial dynamics. In the limit that prey diffuses much more slowly than predator, the Turing bifurcation is found to be subcritical, which gives rise to localized patterns within a Pomeau pinning parameter region. Parameter regions for localized patterns and isolated spots are delineated. For a realistic range of parameters, a temporal Hopf bifurcation of the balanced equilibrium state occurs within the localized-pattern region. Detailed spectral computations and numerical simulations reveal how the Hopf bifurcation is inherited by the localized structures at nearby parameter values, giving rise to both temporally periodic and chaotic localized patterns. Simulation results in 2D confirm the onset of complex spatio-temporal patterns within the corresponding parameter regions. The generality of the results is confirmed by showing qualitatively the same bifurcation structure within a similar model with quadratic interaction and saturation. The implications for ecology are briefly discussed.
期刊介绍:
The IMA Journal of Applied Mathematics is a direct successor of the Journal of the Institute of Mathematics and its Applications which was started in 1965. It is an interdisciplinary journal that publishes research on mathematics arising in the physical sciences and engineering as well as suitable articles in the life sciences, social sciences, and finance. Submissions should address interesting and challenging mathematical problems arising in applications. A good balance between the development of the application(s) and the analysis is expected. Papers that either use established methods to address solved problems or that present analysis in the absence of applications will not be considered.
The journal welcomes submissions in many research areas. Examples are: continuum mechanics materials science and elasticity, including boundary layer theory, combustion, complex flows and soft matter, electrohydrodynamics and magnetohydrodynamics, geophysical flows, granular flows, interfacial and free surface flows, vortex dynamics; elasticity theory; linear and nonlinear wave propagation, nonlinear optics and photonics; inverse problems; applied dynamical systems and nonlinear systems; mathematical physics; stochastic differential equations and stochastic dynamics; network science; industrial applications.