Stationary and oscillatory localized patterns in ratio-dependent predator–prey systems

IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED IMA Journal of Applied Mathematics Pub Date : 2021-06-01 DOI:10.1093/imamat/hxab018
Fahad Al Saadi;Alan Champneys;Annette Worthy;Ahmed Msmali
{"title":"Stationary and oscillatory localized patterns in ratio-dependent predator–prey systems","authors":"Fahad Al Saadi;Alan Champneys;Annette Worthy;Ahmed Msmali","doi":"10.1093/imamat/hxab018","DOIUrl":null,"url":null,"abstract":"Investigations are undertaken into simple predator–prey models with rational interaction terms in one and two spatial dimensions. Focusing on a case with linear interaction and saturation, an analysis for long domains in 1D is undertaken using ideas from spatial dynamics. In the limit that prey diffuses much more slowly than predator, the Turing bifurcation is found to be subcritical, which gives rise to localized patterns within a Pomeau pinning parameter region. Parameter regions for localized patterns and isolated spots are delineated. For a realistic range of parameters, a temporal Hopf bifurcation of the balanced equilibrium state occurs within the localized-pattern region. Detailed spectral computations and numerical simulations reveal how the Hopf bifurcation is inherited by the localized structures at nearby parameter values, giving rise to both temporally periodic and chaotic localized patterns. Simulation results in 2D confirm the onset of complex spatio-temporal patterns within the corresponding parameter regions. The generality of the results is confirmed by showing qualitatively the same bifurcation structure within a similar model with quadratic interaction and saturation. The implications for ecology are briefly discussed.","PeriodicalId":56297,"journal":{"name":"IMA Journal of Applied Mathematics","volume":"86 1","pages":"808-827"},"PeriodicalIF":1.4000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9514760/","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4

Abstract

Investigations are undertaken into simple predator–prey models with rational interaction terms in one and two spatial dimensions. Focusing on a case with linear interaction and saturation, an analysis for long domains in 1D is undertaken using ideas from spatial dynamics. In the limit that prey diffuses much more slowly than predator, the Turing bifurcation is found to be subcritical, which gives rise to localized patterns within a Pomeau pinning parameter region. Parameter regions for localized patterns and isolated spots are delineated. For a realistic range of parameters, a temporal Hopf bifurcation of the balanced equilibrium state occurs within the localized-pattern region. Detailed spectral computations and numerical simulations reveal how the Hopf bifurcation is inherited by the localized structures at nearby parameter values, giving rise to both temporally periodic and chaotic localized patterns. Simulation results in 2D confirm the onset of complex spatio-temporal patterns within the corresponding parameter regions. The generality of the results is confirmed by showing qualitatively the same bifurcation structure within a similar model with quadratic interaction and saturation. The implications for ecology are briefly discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
比例依赖捕食者-被捕食系统的平稳和振荡局部化模式
在一个和两个空间维度上,对具有合理相互作用项的简单捕食者-猎物模型进行了研究。针对线性相互作用和饱和的情况,利用空间动力学的思想对一维中的长域进行了分析。在猎物扩散速度比捕食者慢得多的极限下,图灵分支被发现是亚临界的,这在波莫钉扎参数区域内产生了局部模式。描绘了局部图案和孤立斑点的参数区域。对于现实的参数范围,平衡平衡状态的时间Hopf分岔发生在局部模式区域内。详细的谱计算和数值模拟揭示了Hopf分岔是如何由附近参数值的局部化结构继承的,从而产生时间周期性和混沌局部化模式。2D中的模拟结果证实了在相应的参数区域内复杂的时空模式的开始。通过在具有二次相互作用和饱和的相似模型中定性地显示相同的分叉结构,证实了结果的普遍性。简要讨论了对生态学的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
8.30%
发文量
32
审稿时长
24 months
期刊介绍: The IMA Journal of Applied Mathematics is a direct successor of the Journal of the Institute of Mathematics and its Applications which was started in 1965. It is an interdisciplinary journal that publishes research on mathematics arising in the physical sciences and engineering as well as suitable articles in the life sciences, social sciences, and finance. Submissions should address interesting and challenging mathematical problems arising in applications. A good balance between the development of the application(s) and the analysis is expected. Papers that either use established methods to address solved problems or that present analysis in the absence of applications will not be considered. The journal welcomes submissions in many research areas. Examples are: continuum mechanics materials science and elasticity, including boundary layer theory, combustion, complex flows and soft matter, electrohydrodynamics and magnetohydrodynamics, geophysical flows, granular flows, interfacial and free surface flows, vortex dynamics; elasticity theory; linear and nonlinear wave propagation, nonlinear optics and photonics; inverse problems; applied dynamical systems and nonlinear systems; mathematical physics; stochastic differential equations and stochastic dynamics; network science; industrial applications.
期刊最新文献
The impact of confinement on the deformation of an elastic particle under axisymmetric tube flow On the P-Irreducibility of Quintic Positive Polynomials An explicit Maclaurin series solution to non-autonomous and non-homogeneous evolution equation, Omega Calculus, and associated applications Can physics-informed neural networks beat the finite element method? Trust your source: quantifying source condition elements for variational regularisation methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1