Trajectory design via unsupervised probabilistic learning on optimal manifolds

IF 2.4 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE DataCentric Engineering Pub Date : 2022-08-23 DOI:10.1017/dce.2022.26
C. Safta, R. Ghanem, M. J. Grant, Michael J. Sparapany, H. Najm
{"title":"Trajectory design via unsupervised probabilistic learning on optimal manifolds","authors":"C. Safta, R. Ghanem, M. J. Grant, Michael J. Sparapany, H. Najm","doi":"10.1017/dce.2022.26","DOIUrl":null,"url":null,"abstract":"Abstract This article illustrates the use of unsupervised probabilistic learning techniques for the analysis of planetary reentry trajectories. A three-degree-of-freedom model was employed to generate optimal trajectories that comprise the training datasets. The algorithm first extracts the intrinsic structure in the data via a diffusion map approach. We find that data resides on manifolds of much lower dimensionality compared to the high-dimensional state space that describes each trajectory. Using the diffusion coordinates on the graph of training samples, the probabilistic framework subsequently augments the original data with samples that are statistically consistent with the original set. The augmented samples are then used to construct conditional statistics that are ultimately assembled in a path planning algorithm. In this framework, the controls are determined stage by stage during the flight to adapt to changing mission objectives in real-time.","PeriodicalId":34169,"journal":{"name":"DataCentric Engineering","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DataCentric Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/dce.2022.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract This article illustrates the use of unsupervised probabilistic learning techniques for the analysis of planetary reentry trajectories. A three-degree-of-freedom model was employed to generate optimal trajectories that comprise the training datasets. The algorithm first extracts the intrinsic structure in the data via a diffusion map approach. We find that data resides on manifolds of much lower dimensionality compared to the high-dimensional state space that describes each trajectory. Using the diffusion coordinates on the graph of training samples, the probabilistic framework subsequently augments the original data with samples that are statistically consistent with the original set. The augmented samples are then used to construct conditional statistics that are ultimately assembled in a path planning algorithm. In this framework, the controls are determined stage by stage during the flight to adapt to changing mission objectives in real-time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于无监督概率学习的最优流形轨迹设计
摘要本文阐述了无监督概率学习技术在行星再入轨迹分析中的应用。采用三自由度模型来生成包括训练数据集的最优轨迹。该算法首先通过扩散图方法提取数据中的内在结构。我们发现,与描述每条轨迹的高维状态空间相比,数据驻留在维度低得多的流形上。使用训练样本图上的扩散坐标,概率框架随后用与原始集统计一致的样本来扩充原始数据。扩增的样本随后被用于构建条件统计,这些条件统计最终被组装在路径规划算法中。在这个框架中,控制是在飞行过程中逐步确定的,以实时适应不断变化的任务目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
DataCentric Engineering
DataCentric Engineering Engineering-General Engineering
CiteScore
5.60
自引率
0.00%
发文量
26
审稿时长
12 weeks
期刊最新文献
Semantic 3D city interfaces—Intelligent interactions on dynamic geospatial knowledge graphs Optical network physical layer parameter optimization for digital backpropagation using Gaussian processes Finite element model updating with quantified uncertainties using point cloud data Evaluating probabilistic forecasts for maritime engineering operations Bottom-up forecasting: Applications and limitations in load forecasting using smart-meter data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1