Tarik Alhmoud , Anand Kumar , Chien-Chi Lo , Rana Al-Sadi , Stacey Clegg , Ihab Alomari , Tarek Zmeili , Cheryl Diane Gleasne , Kim Mcmurry , Armand Earl Ko Dichosa , Momchilo Vuyisich , Patrick Sam Guy Chain , Shiraz Mishra , Thomas Ma
{"title":"Investigating intestinal permeability and gut microbiota roles in acute coronary syndrome patients","authors":"Tarik Alhmoud , Anand Kumar , Chien-Chi Lo , Rana Al-Sadi , Stacey Clegg , Ihab Alomari , Tarek Zmeili , Cheryl Diane Gleasne , Kim Mcmurry , Armand Earl Ko Dichosa , Momchilo Vuyisich , Patrick Sam Guy Chain , Shiraz Mishra , Thomas Ma","doi":"10.1016/j.humic.2019.100059","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Acute Coronary Syndrome (ACS) is a leading cause of morbidity and mortality. Perturbed gut-microbiota (dysbiosis) and increased intestinal permeability (leaky-gut) with translocation of bacterial antigens, play critical role in obesity and metabolic syndrome, which are also major ACS risk factors. Additionally, Trimethylamine-N-Oxide (TMAO), a metabolite produced by phylum Proteobacteria in gut is implicated in developing ACS. As Proteobacteria is a major source of translocated antigen lipopolysaccharides (LPS), we hypothesized that ACS patients have leaky-gut condition characterized by dysbiosis with increased Proteobacteria, leading to elevated blood levels of TMAO and LPS.</p></div><div><h3>Methods</h3><p>In a pilot case-control study, we enrolled 19 ACS patients (within 72-h of cardiac events) and 19 healthy-controls. Gut barrier function was determined using lactulose-to-mannitol urinary excretion ratio (L/M ratio). Stool microbiome composition was examined using16S sequencing and predictive functional analysis for LPS biosynthesis pathway by PICRUSt tool. Serum TMAO and LPS levels were measured.</p></div><div><h3>Results</h3><p>ACS patients had increased Gammaproteobacteria compared to controls:1.8 ± 3.0 vs. 0.2 ± 0.4% (P = 0.04). Though Proteobacteria level was increased but not statistically significant: 4.1 ± 3.8 vs. 2.1 ± 1.7% (P = 0.056). L/M-ratio was three times higher in ACS patients; 0.06 ± 0.07 vs 0.023 ± 0.02, (P = 0.014). Surprisingly, there was no difference in the mean serum LPS or TMAO levels. However, PICRUSt analysis indicated increased Proteobacteria population increasingly contributed to LPS biosynthesis in ACS patients only.</p></div><div><h3>Conclusions</h3><p>ACS patients likely to have leaky-gut and perturbed gut microbiota. Further studies are required to precisely define the role of dysbiosis in ACS.</p></div>","PeriodicalId":37790,"journal":{"name":"Human Microbiome Journal","volume":"13 ","pages":"Article 100059"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.humic.2019.100059","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Microbiome Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452231719300107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 22
Abstract
Background
Acute Coronary Syndrome (ACS) is a leading cause of morbidity and mortality. Perturbed gut-microbiota (dysbiosis) and increased intestinal permeability (leaky-gut) with translocation of bacterial antigens, play critical role in obesity and metabolic syndrome, which are also major ACS risk factors. Additionally, Trimethylamine-N-Oxide (TMAO), a metabolite produced by phylum Proteobacteria in gut is implicated in developing ACS. As Proteobacteria is a major source of translocated antigen lipopolysaccharides (LPS), we hypothesized that ACS patients have leaky-gut condition characterized by dysbiosis with increased Proteobacteria, leading to elevated blood levels of TMAO and LPS.
Methods
In a pilot case-control study, we enrolled 19 ACS patients (within 72-h of cardiac events) and 19 healthy-controls. Gut barrier function was determined using lactulose-to-mannitol urinary excretion ratio (L/M ratio). Stool microbiome composition was examined using16S sequencing and predictive functional analysis for LPS biosynthesis pathway by PICRUSt tool. Serum TMAO and LPS levels were measured.
Results
ACS patients had increased Gammaproteobacteria compared to controls:1.8 ± 3.0 vs. 0.2 ± 0.4% (P = 0.04). Though Proteobacteria level was increased but not statistically significant: 4.1 ± 3.8 vs. 2.1 ± 1.7% (P = 0.056). L/M-ratio was three times higher in ACS patients; 0.06 ± 0.07 vs 0.023 ± 0.02, (P = 0.014). Surprisingly, there was no difference in the mean serum LPS or TMAO levels. However, PICRUSt analysis indicated increased Proteobacteria population increasingly contributed to LPS biosynthesis in ACS patients only.
Conclusions
ACS patients likely to have leaky-gut and perturbed gut microbiota. Further studies are required to precisely define the role of dysbiosis in ACS.
期刊介绍:
The innumerable microbes living in and on our bodies are known to affect human wellbeing, but our knowledge of their role is still at the very early stages of understanding. Human Microbiome is a new open access journal dedicated to research on the impact of the microbiome on human health and disease. The journal will publish original research, reviews, comments, human microbe descriptions and genome, and letters. Topics covered will include: the repertoire of human-associated microbes, therapeutic intervention, pathophysiology, experimental models, physiological, geographical, and pathological changes, and technical reports; genomic, metabolomic, transcriptomic, and culturomic approaches are welcome.