Detection and characterisation of short fatigue cracks by inductive thermography

IF 3.7 3区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION Quantitative Infrared Thermography Journal Pub Date : 2021-07-28 DOI:10.1080/17686733.2021.1953226
B. Oswald-Tranta
{"title":"Detection and characterisation of short fatigue cracks by inductive thermography","authors":"B. Oswald-Tranta","doi":"10.1080/17686733.2021.1953226","DOIUrl":null,"url":null,"abstract":"ABSTRACT Inductive thermography can be excellently used to detect surface cracks in metals. A short induction heating pulse (0.1-1s) induces eddy currents in the sample and an infrared camera records the surface temperature distribution. As cracks disturb the eddy current distribution and the heat diffusion, they become visible in the infrared images. In this paper it is investigated, how different parameters influence the surface pattern around short cracks (0.5-12mm length). The main emphasis is on finite element simulations, but some experimental results are presented, too. The influence of crack geometry, as crack depth, length, inclination angle and crack shape below the surface are investigated for ferro-magnetic and austenitic steel. Around the crack tips high temperature ‘hot spots’ can be observed, which intensity increases with the crack depth. But this intensity is strongly affected by the crack shape, whether it is rectangular, trapezoid or half-penny shape. For longer cracks (6-8mm length) simulation results show, that in the middle of the crack the phase distribution can be used to estimate the crack depth. Furthermore, the effect of experimental parameters, as excitation frequency, heating pulse duration and the angle between crack line and induction coil are investigated in order to optimize an experimental setup.","PeriodicalId":54525,"journal":{"name":"Quantitative Infrared Thermography Journal","volume":"19 1","pages":"239 - 260"},"PeriodicalIF":3.7000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17686733.2021.1953226","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Infrared Thermography Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17686733.2021.1953226","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 9

Abstract

ABSTRACT Inductive thermography can be excellently used to detect surface cracks in metals. A short induction heating pulse (0.1-1s) induces eddy currents in the sample and an infrared camera records the surface temperature distribution. As cracks disturb the eddy current distribution and the heat diffusion, they become visible in the infrared images. In this paper it is investigated, how different parameters influence the surface pattern around short cracks (0.5-12mm length). The main emphasis is on finite element simulations, but some experimental results are presented, too. The influence of crack geometry, as crack depth, length, inclination angle and crack shape below the surface are investigated for ferro-magnetic and austenitic steel. Around the crack tips high temperature ‘hot spots’ can be observed, which intensity increases with the crack depth. But this intensity is strongly affected by the crack shape, whether it is rectangular, trapezoid or half-penny shape. For longer cracks (6-8mm length) simulation results show, that in the middle of the crack the phase distribution can be used to estimate the crack depth. Furthermore, the effect of experimental parameters, as excitation frequency, heating pulse duration and the angle between crack line and induction coil are investigated in order to optimize an experimental setup.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
感应热成像法检测和表征短疲劳裂纹
摘要感应热成像可以很好地用于检测金属表面裂纹。短感应加热脉冲(0.1-1s)在样品中感应涡流,红外相机记录表面温度分布。由于裂纹干扰了涡流分布和热扩散,它们在红外图像中变得可见。本文研究了不同参数对短裂纹(0.5-12mm长度)表面形貌的影响。重点是有限元模拟,但也给出了一些实验结果。研究了铁磁性钢和奥氏体钢表面以下裂纹几何形状,如裂纹深度、长度、倾角和裂纹形状的影响。在裂纹尖端周围可以观察到高温“热点”,其强度随着裂纹深度的增加而增加。但无论是矩形、梯形还是半便士形状,这种强度都受到裂纹形状的强烈影响。对于较长的裂纹(6-8mm长),模拟结果表明,在裂纹中间的相分布可以用来估计裂纹的深度。此外,还研究了激励频率、加热脉冲持续时间以及裂纹线与感应线圈之间的角度等实验参数的影响,以优化实验装置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Quantitative Infrared Thermography Journal
Quantitative Infrared Thermography Journal Physics and Astronomy-Instrumentation
CiteScore
6.80
自引率
12.00%
发文量
17
审稿时长
>12 weeks
期刊介绍: The Quantitative InfraRed Thermography Journal (QIRT) provides a forum for industry and academia to discuss the latest developments of instrumentation, theoretical and experimental practices, data reduction, and image processing related to infrared thermography.
期刊最新文献
Automatic segmentation of microporous defects in composite film materials based on the improved attention U-Net module A deep learning based experimental framework for automatic staging of pressure ulcers from thermal images Enhancing the thermographic diagnosis of maxillary sinusitis using deep learning approach Review of unmanned aerial vehicle infrared thermography (UAV-IRT) applications in building thermal performance: towards the thermal performance evaluation of building envelope Evaluation of typical rail defects by induction thermography: experimental results and procedure for data analysis during high-speed laboratory testing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1