{"title":"Application of Interactive Video Games as Rehabilitation Tools to Improve Postural Control and Risk of Falls in Prefrail Older Adults","authors":"Hammad Alhasan, P. Wheeler, D. Fong","doi":"10.34133/2021/9841342","DOIUrl":null,"url":null,"abstract":"The purpose of this study was to examine whether interactive video game (IVG) training is an effective way to improve postural control outcomes and decrease the risk of falls. A convenience sample of 12 prefrail older adults were recruited and divided into two groups: intervention group performed IVG training for 40 minutes, twice per week, for a total of 16 sessions. The control group received no intervention and continued their usual activity. Outcome measures were centre of pressure (COP), mean velocity, sway area, and sway path. Secondary outcomes were Berg Balance Scale, Timed Up and Go (TUG), Falls Efficacy Scale International (FES-I), and Activities-Specific Balance Confidence (ABC). Assessment was conducted with preintervention (week zero) and postintervention (week eight). The intervention group showed significant improvement in mean velocity, sway area, Berg Balance Scale, and TUG (p < 0.01) compared to the control group. However, no significant improvement was observed for sway path (p = 0.35), FES-I (p = 0.383), and ABC (p = 0.283). This study showed that IVG training led to significant improvements in postural control but not for risk of falls.","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":" ","pages":""},"PeriodicalIF":10.5000,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyborg and bionic systems (Washington, D.C.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/2021/9841342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 5
Abstract
The purpose of this study was to examine whether interactive video game (IVG) training is an effective way to improve postural control outcomes and decrease the risk of falls. A convenience sample of 12 prefrail older adults were recruited and divided into two groups: intervention group performed IVG training for 40 minutes, twice per week, for a total of 16 sessions. The control group received no intervention and continued their usual activity. Outcome measures were centre of pressure (COP), mean velocity, sway area, and sway path. Secondary outcomes were Berg Balance Scale, Timed Up and Go (TUG), Falls Efficacy Scale International (FES-I), and Activities-Specific Balance Confidence (ABC). Assessment was conducted with preintervention (week zero) and postintervention (week eight). The intervention group showed significant improvement in mean velocity, sway area, Berg Balance Scale, and TUG (p < 0.01) compared to the control group. However, no significant improvement was observed for sway path (p = 0.35), FES-I (p = 0.383), and ABC (p = 0.283). This study showed that IVG training led to significant improvements in postural control but not for risk of falls.