Maryam Salehnassaj, M. Nikoorazm, A. Zabardasti, H. Goudarziafshar, B. G. Oliveira
{"title":"Cooperation of Peripheral Hydrogen Atoms for the Stabilization of Aachno-pentaborane (11) with Small Molecules: Hydrogen Bonds and Dihydrogen Bonds","authors":"Maryam Salehnassaj, M. Nikoorazm, A. Zabardasti, H. Goudarziafshar, B. G. Oliveira","doi":"10.17807/orbital.v15i2.16800","DOIUrl":null,"url":null,"abstract":"Post-Hartree-Fock calculations performed at the MP2/aug-cc-pVDZ level of theory has been used to analyze the formation of intermolecular complexes between B5H11 and W = CO, NCH, NH3, H2O or HOCH3. The interactions on the structure of the arachno-pentaborane(11) are manifested by the terminal and bridge hydrogen atoms, whereby are formed the hydrogen bonds (H∙∙∙Y with Y = O, C or N) as well as dihydrogen bonds (H∙∙∙H). In this context, the B5H11 shows a host-guest capability for trapping molecules, of course depending on the strength of each aforementioned interactions. The topological descriptors of the Quantum Theory of Atoms in Molecules (QTAIM) were decisive for unveiling each one of the following structures B5H11∙∙∙CO, B5H11∙∙∙NCH, B5H11∙∙∙NH3, B5H11∙∙∙H2O and B5H11∙∙∙HOCH3, and ideally, all hydrogen bonding formed by them.","PeriodicalId":19680,"journal":{"name":"Orbital: The Electronic Journal of Chemistry","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Orbital: The Electronic Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17807/orbital.v15i2.16800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Post-Hartree-Fock calculations performed at the MP2/aug-cc-pVDZ level of theory has been used to analyze the formation of intermolecular complexes between B5H11 and W = CO, NCH, NH3, H2O or HOCH3. The interactions on the structure of the arachno-pentaborane(11) are manifested by the terminal and bridge hydrogen atoms, whereby are formed the hydrogen bonds (H∙∙∙Y with Y = O, C or N) as well as dihydrogen bonds (H∙∙∙H). In this context, the B5H11 shows a host-guest capability for trapping molecules, of course depending on the strength of each aforementioned interactions. The topological descriptors of the Quantum Theory of Atoms in Molecules (QTAIM) were decisive for unveiling each one of the following structures B5H11∙∙∙CO, B5H11∙∙∙NCH, B5H11∙∙∙NH3, B5H11∙∙∙H2O and B5H11∙∙∙HOCH3, and ideally, all hydrogen bonding formed by them.
期刊介绍:
Orbital: The Electronic Journal of Chemistry is a quarterly scientific journal published by the Institute of Chemistry of the Universidade Federal de Mato Grosso do Sul, Brazil. Original contributions (in English) are welcome, which focus on all areas of Chemistry and their interfaces with Pharmacy, Biology, and Physics. Neither authors nor readers have to pay fees. The journal has an editorial team of scientists drawn from regions throughout Brazil and world, ensuring high standards for the texts published. The following categories are available for contributions: 1. Full papers 2. Reviews 3. Papers on Education 4. History of Chemistry 5. Short communications 6. Technical notes 7. Letters to the Editor The Orbital journal also publishes a number of special issues in addition to the regular ones. The central objectives of Orbital are threefold: (i) to provide the general scientific community (at regional, Brazilian, and worldwide levels) with a formal channel for the communication and dissemination of the Chemistry-related literature output by publishing original papers based on solid research and by reporting contributions which further knowledge in the field; (ii) to provide the community with open, free access to the full content of the journal, and (iii) to constitute a valuable channel for the dissemination of Chemistry-related investigations.