Y. Athugala, K. M. G. Gehan Jayasuriya, A. Gunaratne, C. Baskin
{"title":"Desiccation tolerance and sensitivity of selected tropical montane species in Sri Lanka","authors":"Y. Athugala, K. M. G. Gehan Jayasuriya, A. Gunaratne, C. Baskin","doi":"10.1017/S0960258521000088","DOIUrl":null,"url":null,"abstract":"Abstract Although the level of seed desiccation sensitivity (LSDS) may have an impact on plant species conservation, information is available for <10% of tropical angiosperms. A study was conducted to assess the LSDS of 28 tropical montane species in Sri Lanka. Seeds were extracted from freshly collected fruits. Initial weight was recorded, and thousand seed weight (TSW) was calculated. Seed moisture content (MC) was determined. LSDS was determined using seed desiccation experiments and predicted using the TSW–MC criterion. Seed storage behaviour was predicted using LSDS and storage data and using a model based on phylogenetic affiliation. The relationship between LSDS and seed dormancy, life form and forest strata was evaluated. Fresh seeds of only 12 species germinated to >80%. Although seeds of the other species had >80% viability, only 0–70% germinated due to dormancy. Seeds of five species had MC <15%, indicating desiccation tolerance (DT). Seeds of 12 species lost viability after desiccation, indicating desiccation sensitivity (DS). Seeds of Ardisia missionis, Psychotria gartneri and Psychotria nigra remained viable after desiccation, showing DT. Seeds of 17 species were DS and those of 11 species DT. The TSW of four species was >500 g. Thus, seeds of other species were predicted to be DT by the TSW–MC criterion. A relationship was identified between LSDS and the forest strata of the species. More canopy species produced DS than DT seeds. Since seeds of most of the studied species were DS, these species may be threatened due to prolonged droughts predicted for the region due to climate change.","PeriodicalId":21711,"journal":{"name":"Seed Science Research","volume":"31 1","pages":"98 - 104"},"PeriodicalIF":2.1000,"publicationDate":"2021-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S0960258521000088","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seed Science Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1017/S0960258521000088","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Although the level of seed desiccation sensitivity (LSDS) may have an impact on plant species conservation, information is available for <10% of tropical angiosperms. A study was conducted to assess the LSDS of 28 tropical montane species in Sri Lanka. Seeds were extracted from freshly collected fruits. Initial weight was recorded, and thousand seed weight (TSW) was calculated. Seed moisture content (MC) was determined. LSDS was determined using seed desiccation experiments and predicted using the TSW–MC criterion. Seed storage behaviour was predicted using LSDS and storage data and using a model based on phylogenetic affiliation. The relationship between LSDS and seed dormancy, life form and forest strata was evaluated. Fresh seeds of only 12 species germinated to >80%. Although seeds of the other species had >80% viability, only 0–70% germinated due to dormancy. Seeds of five species had MC <15%, indicating desiccation tolerance (DT). Seeds of 12 species lost viability after desiccation, indicating desiccation sensitivity (DS). Seeds of Ardisia missionis, Psychotria gartneri and Psychotria nigra remained viable after desiccation, showing DT. Seeds of 17 species were DS and those of 11 species DT. The TSW of four species was >500 g. Thus, seeds of other species were predicted to be DT by the TSW–MC criterion. A relationship was identified between LSDS and the forest strata of the species. More canopy species produced DS than DT seeds. Since seeds of most of the studied species were DS, these species may be threatened due to prolonged droughts predicted for the region due to climate change.
期刊介绍:
Seed Science Research, the official journal of the International Society for Seed Science, is a leading international journal featuring high-quality original papers and review articles on the fundamental aspects of seed science, reviewed by internationally distinguished editors. The emphasis is on the physiology, biochemistry, molecular biology and ecology of seeds.