Where are the outcrops? Automatic delineation of bedrock from sediments using Deep-Learning techniques

IF 3.2 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Applied Computing and Geosciences Pub Date : 2023-06-01 DOI:10.1016/j.acags.2023.100119
Alexandra Jarna Ganerød , Vegar Bakkestuen , Martina Calovi , Ola Fredin , Jan Ketil Rød
{"title":"Where are the outcrops? Automatic delineation of bedrock from sediments using Deep-Learning techniques","authors":"Alexandra Jarna Ganerød ,&nbsp;Vegar Bakkestuen ,&nbsp;Martina Calovi ,&nbsp;Ola Fredin ,&nbsp;Jan Ketil Rød","doi":"10.1016/j.acags.2023.100119","DOIUrl":null,"url":null,"abstract":"<div><p>The delineating of bedrock from sediment is one of the most important phases in the fundamental process of regional bedrock identification and mapping, and it is usually manually performed using high-resolution optical remote-sensing images or Light Detection and Ranging (LiDAR) data. This task, although straightforward, is time consuming and requires extensive and specialized labor. We contribute to this line of research by proposing an automated approach that uses cloud computing, deep learning, fully convolutional neural networks, and a U-Net model applied in Google Collaboratory (Colab). Specifically, we tested this method on a site in southwestern Norway using both a set of explanatory variables generated from a 10 m resolution digital elevation model (DEM) and, for comparison, cloud-based Landsat 8 data. Results show an automatic delineation performance measured by an F1 score between 77% and 84% for DEM terrain derivatives against a manually-mapped ground truth. Overall, our automated bedrock identification model reveals very promising results within its constraints.</p></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"18 ","pages":"Article 100119"},"PeriodicalIF":3.2000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197423000083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2

Abstract

The delineating of bedrock from sediment is one of the most important phases in the fundamental process of regional bedrock identification and mapping, and it is usually manually performed using high-resolution optical remote-sensing images or Light Detection and Ranging (LiDAR) data. This task, although straightforward, is time consuming and requires extensive and specialized labor. We contribute to this line of research by proposing an automated approach that uses cloud computing, deep learning, fully convolutional neural networks, and a U-Net model applied in Google Collaboratory (Colab). Specifically, we tested this method on a site in southwestern Norway using both a set of explanatory variables generated from a 10 m resolution digital elevation model (DEM) and, for comparison, cloud-based Landsat 8 data. Results show an automatic delineation performance measured by an F1 score between 77% and 84% for DEM terrain derivatives against a manually-mapped ground truth. Overall, our automated bedrock identification model reveals very promising results within its constraints.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
露头在哪里?使用深度学习技术从沉积物中自动描绘基岩
基岩与沉积物的圈定是区域基岩识别与制图基本过程中最重要的阶段之一,通常采用高分辨率光学遥感图像或激光雷达(LiDAR)数据进行人工圈定。这项任务虽然简单,但很耗时,需要大量的专业劳动。我们通过提出一种使用云计算、深度学习、全卷积神经网络和应用于谷歌合作实验室(Colab)的U-Net模型的自动化方法,为这一研究领域做出了贡献。具体来说,我们在挪威西南部的一个地点测试了这种方法,使用了一组由10米分辨率数字高程模型(DEM)产生的解释变量,以及基于云的Landsat 8数据进行比较。结果表明,相对于手动绘制的真实地面,DEM地形导数的F1得分在77%到84%之间。总的来说,我们的自动化基岩识别模型在其约束条件下显示了非常有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Computing and Geosciences
Applied Computing and Geosciences Computer Science-General Computer Science
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
5 weeks
期刊最新文献
Enhancing neuro-symbolic AI for mineral prediction via LLM-guided knowledge integration Editorial Board Separation of P- and S-waves on shallow subsurface using transfer learning Analyzing land use land cover changes in Mysuru taluk, Karnataka state, India using vision transformers Fine-tuning small and open LLMs to automate geoscience data analysis workflows: A scalable approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1