{"title":"Study on water resistance improvement of wood dowel rotation welding joints","authors":"Suxia Li, Jiarong He, Jiawei Wu, Yang Yang, Qiyu Sun, Xiaoning Lu, Zhongfeng Zhang","doi":"10.1080/02773813.2023.2204858","DOIUrl":null,"url":null,"abstract":"Abstract Rotation welding of wood dowels has the advantages of high bonding strength, fast processing speed and green environmental protection, and is suitable for jointing nodes in furniture and wood products. However, most wood friction welding specimens have poor water resistance where the welded joints are more likely to be damaged in wet environments, which greatly limits their wider application. Previous studies focused on using natural and green materials or methods to enhance bonding strength and water resistance of friction-welded joints. This paper reveals an innovative chemical pretreatment method to improve the water resistance of rotary friction welded joints by treating the substrate blocks or dowels with reagents that successively oxidize and sulfonate the wood, and spraying the dowels with Zinc acetate alcohol solution that has a lubricant effect, followed by friction welding. The findings show that both the dry bonding strength of friction welded joints and the wet bonding strength after impregnation with cold, hot, and boiling water of dowels pretreated with oxidation and sulfonation reactions were higher than those without pretreatment and significantly superior to the traditional polyvinyl acetate (PVAc) adhesive bonding. Graphical Abstract","PeriodicalId":17493,"journal":{"name":"Journal of Wood Chemistry and Technology","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wood Chemistry and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/02773813.2023.2204858","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Rotation welding of wood dowels has the advantages of high bonding strength, fast processing speed and green environmental protection, and is suitable for jointing nodes in furniture and wood products. However, most wood friction welding specimens have poor water resistance where the welded joints are more likely to be damaged in wet environments, which greatly limits their wider application. Previous studies focused on using natural and green materials or methods to enhance bonding strength and water resistance of friction-welded joints. This paper reveals an innovative chemical pretreatment method to improve the water resistance of rotary friction welded joints by treating the substrate blocks or dowels with reagents that successively oxidize and sulfonate the wood, and spraying the dowels with Zinc acetate alcohol solution that has a lubricant effect, followed by friction welding. The findings show that both the dry bonding strength of friction welded joints and the wet bonding strength after impregnation with cold, hot, and boiling water of dowels pretreated with oxidation and sulfonation reactions were higher than those without pretreatment and significantly superior to the traditional polyvinyl acetate (PVAc) adhesive bonding. Graphical Abstract
期刊介绍:
The Journal of Wood Chemistry and Technology (JWCT) is focused on the rapid publication of research advances in the chemistry of bio-based materials and products, including all aspects of wood-based polymers, chemicals, materials, and technology. JWCT provides an international forum for researchers and manufacturers working in wood-based biopolymers and chemicals, synthesis and characterization, as well as the chemistry of biomass conversion and utilization.
JWCT primarily publishes original research papers and communications, and occasionally invited review articles and special issues. Special issues must summarize and analyze state-of-the-art developments within the field of biomass chemistry, or be in tribute to the career of a distinguished researcher. If you wish to suggest a special issue for the Journal, please email the Editor-in-Chief a detailed proposal that includes the topic, a list of potential contributors, and a time-line.