A transferable recommender approach for selecting the best density functional approximations in chemical discovery

IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Nature computational science Pub Date : 2022-12-22 DOI:10.1038/s43588-022-00384-0
Chenru Duan, Aditya Nandy, Ralf Meyer, Naveen Arunachalam, Heather J. Kulik
{"title":"A transferable recommender approach for selecting the best density functional approximations in chemical discovery","authors":"Chenru Duan, Aditya Nandy, Ralf Meyer, Naveen Arunachalam, Heather J. Kulik","doi":"10.1038/s43588-022-00384-0","DOIUrl":null,"url":null,"abstract":"Approximate density functional theory has become indispensable owing to its balanced cost–accuracy trade-off, including in large-scale screening. To date, however, no density functional approximation (DFA) with universal accuracy has been identified, leading to uncertainty in the quality of data generated from density functional theory. With electron density fitting and Δ-learning, we build a DFA recommender that selects the DFA with the lowest expected error with respect to the gold standard (but cost-prohibitive) coupled cluster theory in a system-specific manner. We demonstrate this recommender approach on the evaluation of vertical spin splitting energies of transition metal complexes. Our recommender predicts top-performing DFAs and yields excellent accuracy (about 2 kcal mol−1) for chemical discovery, outperforming both individual Δ-learning models and the best conventional single-functional approach from a set of 48 DFAs. By demonstrating transferability to diverse synthesized compounds, our recommender potentially addresses the accuracy versus scope dilemma broadly encountered in computational chemistry. A density functional recommender enables chemical space exploration by selecting the best exchange–correlation functional for each system, outperforming the use of a single functional for all systems or transfer learning models.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"3 1","pages":"38-47"},"PeriodicalIF":12.0000,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-022-00384-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 5

Abstract

Approximate density functional theory has become indispensable owing to its balanced cost–accuracy trade-off, including in large-scale screening. To date, however, no density functional approximation (DFA) with universal accuracy has been identified, leading to uncertainty in the quality of data generated from density functional theory. With electron density fitting and Δ-learning, we build a DFA recommender that selects the DFA with the lowest expected error with respect to the gold standard (but cost-prohibitive) coupled cluster theory in a system-specific manner. We demonstrate this recommender approach on the evaluation of vertical spin splitting energies of transition metal complexes. Our recommender predicts top-performing DFAs and yields excellent accuracy (about 2 kcal mol−1) for chemical discovery, outperforming both individual Δ-learning models and the best conventional single-functional approach from a set of 48 DFAs. By demonstrating transferability to diverse synthesized compounds, our recommender potentially addresses the accuracy versus scope dilemma broadly encountered in computational chemistry. A density functional recommender enables chemical space exploration by selecting the best exchange–correlation functional for each system, outperforming the use of a single functional for all systems or transfer learning models.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
化学发现中选择最佳密度泛函近似的可转移推荐方法
近似密度泛函理论在成本与精确度之间权衡利弊,已成为大规模筛选等研究中不可或缺的方法。然而,迄今为止,尚未发现具有普遍准确性的密度泛函近似(DFA),导致密度泛函理论生成的数据质量不确定。通过电子密度拟合和Δ学习,我们建立了一种密度泛函近似推荐器,它能以特定系统的方式选择与黄金标准(但成本高昂)耦合簇理论相比预期误差最小的密度泛函近似。我们在评估过渡金属复合物的垂直自旋分裂能时演示了这种推荐方法。我们的推荐器预测了性能最佳的 DFA,并为化学发现提供了极高的准确度(约 2 kcal mol-1),其性能优于单独的 Δ 学习模型和来自 48 个 DFA 的最佳传统单功能方法。我们的推荐器能适用于多种合成化合物,从而有可能解决计算化学中普遍存在的精度与范围的两难问题。密度函数推荐器通过为每个系统选择最佳交换相关函数来实现化学空间探索,优于对所有系统或迁移学习模型使用单一函数的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
期刊最新文献
Harnessing the power of DNA for computing Collective deliberation driven by AI Harnessing deep learning to build optimized ligands MassiveFold: unveiling AlphaFold’s hidden potential with optimized and parallelized massive sampling A deep learning approach for rational ligand generation with toxicity control via reactive building blocks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1