Identifying Behavioral Factors Leading to Differential Polarization Effects of Adversarial Botnets

IF 0.4 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Applied Computing Review Pub Date : 2023-06-01 DOI:10.1145/3610409.3610412
Yeonjung Lee, M. Ozer, S. Corman, H. Davulcu
{"title":"Identifying Behavioral Factors Leading to Differential Polarization Effects of Adversarial Botnets","authors":"Yeonjung Lee, M. Ozer, S. Corman, H. Davulcu","doi":"10.1145/3610409.3610412","DOIUrl":null,"url":null,"abstract":"In this paper, we utilize a Twitter dataset collected between December 8, 2021 and February 18, 2022, during the lead-up to the 2022 Russian invasion of Ukraine. Our aim is to design a data processing pipeline featuring a high-accuracy Graph Convolutional Network (GCN) based political camp classifier, a botnet detection algorithm, and a robust measure of botnet effects. Our experiments reveal that while the pro-Russian botnet contributes significantly to network polarization, the pro-Ukrainian botnet contributes with moderating effects. To understand the factors leading to these different effects, we analyze the interactions between the botnets and the users, distinguishing between barrier-crossing users, who navigate across different political camps, and barrier-bound users, who remain within their own camps. We observe that the pro-Russian botnet amplifies the barrier-bound partisan users within their own camp most of the time. In contrast, the pro-Ukrainian botnet amplifies the barrier-crossing users on their own camp alongside themselves for the majority of the time.","PeriodicalId":42971,"journal":{"name":"Applied Computing Review","volume":"23 1","pages":"44 - 56"},"PeriodicalIF":0.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3610409.3610412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we utilize a Twitter dataset collected between December 8, 2021 and February 18, 2022, during the lead-up to the 2022 Russian invasion of Ukraine. Our aim is to design a data processing pipeline featuring a high-accuracy Graph Convolutional Network (GCN) based political camp classifier, a botnet detection algorithm, and a robust measure of botnet effects. Our experiments reveal that while the pro-Russian botnet contributes significantly to network polarization, the pro-Ukrainian botnet contributes with moderating effects. To understand the factors leading to these different effects, we analyze the interactions between the botnets and the users, distinguishing between barrier-crossing users, who navigate across different political camps, and barrier-bound users, who remain within their own camps. We observe that the pro-Russian botnet amplifies the barrier-bound partisan users within their own camp most of the time. In contrast, the pro-Ukrainian botnet amplifies the barrier-crossing users on their own camp alongside themselves for the majority of the time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
识别导致敌对僵尸网络差异极化效应的行为因素
在本文中,我们利用了2021年12月8日至2022年2月18日期间收集的推特数据集,该数据集是在2022年俄罗斯入侵乌克兰之前收集的。我们的目标是设计一个数据处理管道,该管道具有基于高精度图卷积网络(GCN)的政治阵营分类器、僵尸网络检测算法和僵尸网络效应的稳健度量。我们的实验表明,虽然亲俄罗斯的僵尸网络对网络两极分化有很大贡献,但亲乌克兰的僵尸网络有缓和作用。为了理解导致这些不同影响的因素,我们分析了僵尸网络和用户之间的互动,区分了跨越不同政治阵营的障碍用户和留在自己阵营中的障碍用户。我们观察到,亲俄罗斯的僵尸网络在大多数时候都会放大自己阵营中的党派用户。相比之下,亲乌克兰的僵尸网络在大多数情况下都会放大自己阵营中的跨国界用户。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Computing Review
Applied Computing Review COMPUTER SCIENCE, INFORMATION SYSTEMS-
自引率
40.00%
发文量
8
期刊最新文献
DIWS-LCR-Rot-hop++: A Domain-Independent Word Selector for Cross-Domain Aspect-Based Sentiment Classification Leveraging Semantic Technologies for Collaborative Inference of Threatening IoT Dependencies Relating Optimal Repairs in Ontology Engineering with Contraction Operations in Belief Change Block-RACS: Towards Reputation-Aware Client Selection and Monetization Mechanism for Federated Learning Elastic Data Binning: Time-Series Sketching for Time-Domain Astrophysics Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1