Development of a knowledge-based intelligent decision support system for operational risk management of global supply chains

IF 1.9 4区 工程技术 Q3 ENGINEERING, INDUSTRIAL European Journal of Industrial Engineering Pub Date : 2018-02-19 DOI:10.1504/EJIE.2018.089878
Yang-Byung Park, Sung-Joon Yoon, Jun-Su Yoo
{"title":"Development of a knowledge-based intelligent decision support system for operational risk management of global supply chains","authors":"Yang-Byung Park, Sung-Joon Yoon, Jun-Su Yoo","doi":"10.1504/EJIE.2018.089878","DOIUrl":null,"url":null,"abstract":"This paper proposes a knowledge-based intelligent decision support system for operational risk management of global supply chains (DSSRMG), a full-phase system not yet treated in the literature. DSSRMG predicts the supply chain performance using the enhanced artificial neural network combined with particle swarm optimisation, infers the core risk source using a method based on principle component analysis, and evaluates risk mitigation alternatives using the digraph-matrix approach combined with principle component analysis. A methodology using an adaptive-network-based fuzzy inference system is suggested to construct the knowledge base for mitigation alternatives. An industrial example is used to illustrate the performance of DSSRMG. Computational experiments show that the techniques used for DSSRMG are excellent. Especially, the algorithm for selecting the useful operation indicators improves the performance prediction accuracy by 7.1% on average. DSSRMG provides supply chain managers with a practical tool to accurately predict and effectively control the operational risk. [Received: 9 March 2017; Revised: 22 July 2017; Accepted: 2 October 2017]","PeriodicalId":51047,"journal":{"name":"European Journal of Industrial Engineering","volume":"12 1","pages":"93-115"},"PeriodicalIF":1.9000,"publicationDate":"2018-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/EJIE.2018.089878","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Industrial Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1504/EJIE.2018.089878","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 10

Abstract

This paper proposes a knowledge-based intelligent decision support system for operational risk management of global supply chains (DSSRMG), a full-phase system not yet treated in the literature. DSSRMG predicts the supply chain performance using the enhanced artificial neural network combined with particle swarm optimisation, infers the core risk source using a method based on principle component analysis, and evaluates risk mitigation alternatives using the digraph-matrix approach combined with principle component analysis. A methodology using an adaptive-network-based fuzzy inference system is suggested to construct the knowledge base for mitigation alternatives. An industrial example is used to illustrate the performance of DSSRMG. Computational experiments show that the techniques used for DSSRMG are excellent. Especially, the algorithm for selecting the useful operation indicators improves the performance prediction accuracy by 7.1% on average. DSSRMG provides supply chain managers with a practical tool to accurately predict and effectively control the operational risk. [Received: 9 March 2017; Revised: 22 July 2017; Accepted: 2 October 2017]
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于知识的全球供应链操作风险管理智能决策支持系统的开发
本文提出了一种基于知识的全球供应链操作风险管理智能决策支持系统(DSSRMG),这是一种文献中尚未涉及的全阶段系统。DSSRMG使用结合粒子群优化的增强型人工神经网络预测供应链绩效,使用基于主成分分析的方法推断核心风险源,并使用结合主成分分析的有向图矩阵方法评估风险缓解方案。提出了一种基于自适应网络的模糊推理系统构建缓解方案知识库的方法。最后用一个工业实例说明了DSSRMG的性能。计算实验表明,DSSRMG所采用的技术是很好的。特别是对有用的操作指标选择算法,性能预测准确率平均提高了7.1%。DSSRMG为供应链管理者准确预测和有效控制运营风险提供了实用的工具。[收稿日期:2017年3月9日;修订日期:2017年7月22日;录用日期:2017年10月2日]
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
European Journal of Industrial Engineering
European Journal of Industrial Engineering 工程技术-工程:工业
CiteScore
2.60
自引率
20.00%
发文量
55
审稿时长
6 months
期刊介绍: EJIE is an international journal aimed at disseminating the latest developments in all areas of industrial engineering, including information and service industries, ergonomics and safety, quality management as well as business and strategy, and at bridging the gap between theory and practice.
期刊最新文献
A collaborative model for predictive maintenance of after-sales equipment based on digital twin An integrated two dimensional cutting stock and lot sizing problem with two criteria Third-party remanufacturing modes with integrated tax-subsidy policy Blockchain capabilities for supply chain management An integrated Markov chain model for the economic-statistical design of adaptive multivariate control charts and maintenance planning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1