Bernstein polynomial of recursive regression estimation with censored data

IF 0.5 4区 数学 Q4 STATISTICS & PROBABILITY Stochastic Models Pub Date : 2022-04-15 DOI:10.1080/15326349.2022.2063335
Y. Slaoui
{"title":"Bernstein polynomial of recursive regression estimation with censored data","authors":"Y. Slaoui","doi":"10.1080/15326349.2022.2063335","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we deal with the problem of the regression estimation near the edges under censoring. For this purpose, we consider a new recursive estimator based on the stochastic approximation algorithm and Bernstein polynomials of the regression function when the response random variable is subject to random right censoring. We give the central limit theorem and the strong pointwise convergence rate for our proposed nonparametric recursive estimators under some mild conditions. Finally, we provide pointwise moderate deviation principles (MDP) for the proposed estimators. We corroborate these theoretical results through simulations as well as the analysis of a real data set.","PeriodicalId":21970,"journal":{"name":"Stochastic Models","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Models","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/15326349.2022.2063335","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract In this paper, we deal with the problem of the regression estimation near the edges under censoring. For this purpose, we consider a new recursive estimator based on the stochastic approximation algorithm and Bernstein polynomials of the regression function when the response random variable is subject to random right censoring. We give the central limit theorem and the strong pointwise convergence rate for our proposed nonparametric recursive estimators under some mild conditions. Finally, we provide pointwise moderate deviation principles (MDP) for the proposed estimators. We corroborate these theoretical results through simulations as well as the analysis of a real data set.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
截尾数据下递归回归估计的Bernstein多项式
摘要本文讨论了在截尾条件下边缘附近的回归估计问题。为此,我们考虑了一种新的递归估计器,该估计器基于随机逼近算法和回归函数的Bernstein多项式,当响应随机变量受到随机右删失时。在一些温和条件下,我们给出了所提出的非参数递归估计的中心极限定理和强逐点收敛速度。最后,我们为所提出的估计量提供了逐点中偏原理(MDP)。我们通过模拟以及对真实数据集的分析来证实这些理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Stochastic Models
Stochastic Models 数学-统计学与概率论
CiteScore
1.30
自引率
14.30%
发文量
42
审稿时长
>12 weeks
期刊介绍: Stochastic Models publishes papers discussing the theory and applications of probability as they arise in the modeling of phenomena in the natural sciences, social sciences and technology. It presents novel contributions to mathematical theory, using structural, analytical, algorithmic or experimental approaches. In an interdisciplinary context, it discusses practical applications of stochastic models to diverse areas such as biology, computer science, telecommunications modeling, inventories and dams, reliability, storage, queueing theory, mathematical finance and operations research.
期刊最新文献
Some asymptotics for short maturity Asian options On the area between a Lévy process with secondary jump inputs and its reflected version On complete convergence for weighted sums of m-widely acceptable random variables under sub-linear expectations and its statistical applications A stochastic fluid model approach to the stationary distribution of the maximal priority process Analysis of a stochastic hybrid Gompertz tumor growth model driven by Lévy noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1