{"title":"A study of the impact of COVID-19 on the Chinese stock market based on a new textual multiple ARMA model.","authors":"Weijun Xu, Zhineng Fu, Hongyi Li, Jinglong Huang, Weidong Xu, Yiyang Luo","doi":"10.1002/sam.11582","DOIUrl":null,"url":null,"abstract":"<p><p>Coronavirus 2019 (COVID-19) has caused violent fluctuation in stock markets, and led to heated discussion in stock forums. The rise and fall of any specific stock is influenced by many other stocks and emotions expressed in forum discussions. Considering the transmission effect of emotions, we propose a new Textual Multiple Auto Regressive Moving Average (TM-ARMA) model to study the impact of COVID-19 on the Chinese stock market. The TM-ARMA model contains a new cross-textual term and a new cross-auto regressive (AR) term that measure the cross impacts of textual emotions and price fluctuations, respectively, and the adjacent matrix which measures the relationships among stocks is updated dynamically. We compute the textual sentiment scores by an emotion dictionary-based method, and estimate the parameter matrices by a maximum likelihood method. Our dataset includes the textual posts from the Eastmoney Stock Forum and the price data for the constituent stocks of the FTSE China A50 Index. We conduct a sliding-window online forecast approach to simulate the real-trading situations. The results show that TM-ARMA performs very well even after the attack of COVID-19.</p>","PeriodicalId":48684,"journal":{"name":"Statistical Analysis and Data Mining","volume":"1 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9111149/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/sam.11582","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Coronavirus 2019 (COVID-19) has caused violent fluctuation in stock markets, and led to heated discussion in stock forums. The rise and fall of any specific stock is influenced by many other stocks and emotions expressed in forum discussions. Considering the transmission effect of emotions, we propose a new Textual Multiple Auto Regressive Moving Average (TM-ARMA) model to study the impact of COVID-19 on the Chinese stock market. The TM-ARMA model contains a new cross-textual term and a new cross-auto regressive (AR) term that measure the cross impacts of textual emotions and price fluctuations, respectively, and the adjacent matrix which measures the relationships among stocks is updated dynamically. We compute the textual sentiment scores by an emotion dictionary-based method, and estimate the parameter matrices by a maximum likelihood method. Our dataset includes the textual posts from the Eastmoney Stock Forum and the price data for the constituent stocks of the FTSE China A50 Index. We conduct a sliding-window online forecast approach to simulate the real-trading situations. The results show that TM-ARMA performs very well even after the attack of COVID-19.
期刊介绍:
Statistical Analysis and Data Mining addresses the broad area of data analysis, including statistical approaches, machine learning, data mining, and applications. Topics include statistical and computational approaches for analyzing massive and complex datasets, novel statistical and/or machine learning methods and theory, and state-of-the-art applications with high impact. Of special interest are articles that describe innovative analytical techniques, and discuss their application to real problems, in such a way that they are accessible and beneficial to domain experts across science, engineering, and commerce.
The focus of the journal is on papers which satisfy one or more of the following criteria:
Solve data analysis problems associated with massive, complex datasets
Develop innovative statistical approaches, machine learning algorithms, or methods integrating ideas across disciplines, e.g., statistics, computer science, electrical engineering, operation research.
Formulate and solve high-impact real-world problems which challenge existing paradigms via new statistical and/or computational models
Provide survey to prominent research topics.