Zi-Fei Lin , Jia-Li Zhao , Yan-Ming Liang , Jiao-Rui Li
{"title":"Predicting solutions of the stochastic fractional order dynamical system using machine learning","authors":"Zi-Fei Lin , Jia-Li Zhao , Yan-Ming Liang , Jiao-Rui Li","doi":"10.1016/j.taml.2023.100433","DOIUrl":null,"url":null,"abstract":"<div><p>The solution of fractional-order systems has been a complex problem for our research. Traditional methods like the predictor-corrector method and other solution steps are complicated and cumbersome to derive, which makes it more difficult for our solution efficiency. The development of machine learning and nonlinear dynamics has provided us with new ideas to solve some complex problems. Therefore, this study considers how to improve the accuracy and efficiency of the solution based on traditional methods. Finally, we propose an efficient and accurate nonlinear auto-regressive neural network for the fractional order dynamic system prediction model (FODS-NAR). First, we demonstrate by example that the FODS-NAR algorithm can predict the solution of a stochastic fractional order system. Second, we compare the FODS-NAR algorithm with the famous and good reservoir computing (RC) algorithms. We find that FODS-NAR gives more accurate predictions than the traditional RC algorithm with the same system parameters, and the residuals of the FODS-NAR algorithm are closer to 0. Consequently, we conclude that the FODS-NAR algorithm is a method with higher accuracy and prediction results closer to the state of fractional-order stochastic systems. In addition, we analyze the effects of the number of neurons and the order of delays in the FODS-NAR algorithm on the prediction results and derive a range of their optimal values.</p></div>","PeriodicalId":46902,"journal":{"name":"Theoretical and Applied Mechanics Letters","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095034923000041","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The solution of fractional-order systems has been a complex problem for our research. Traditional methods like the predictor-corrector method and other solution steps are complicated and cumbersome to derive, which makes it more difficult for our solution efficiency. The development of machine learning and nonlinear dynamics has provided us with new ideas to solve some complex problems. Therefore, this study considers how to improve the accuracy and efficiency of the solution based on traditional methods. Finally, we propose an efficient and accurate nonlinear auto-regressive neural network for the fractional order dynamic system prediction model (FODS-NAR). First, we demonstrate by example that the FODS-NAR algorithm can predict the solution of a stochastic fractional order system. Second, we compare the FODS-NAR algorithm with the famous and good reservoir computing (RC) algorithms. We find that FODS-NAR gives more accurate predictions than the traditional RC algorithm with the same system parameters, and the residuals of the FODS-NAR algorithm are closer to 0. Consequently, we conclude that the FODS-NAR algorithm is a method with higher accuracy and prediction results closer to the state of fractional-order stochastic systems. In addition, we analyze the effects of the number of neurons and the order of delays in the FODS-NAR algorithm on the prediction results and derive a range of their optimal values.
期刊介绍:
An international journal devoted to rapid communications on novel and original research in the field of mechanics. TAML aims at publishing novel, cutting edge researches in theoretical, computational, and experimental mechanics. The journal provides fast publication of letter-sized articles and invited reviews within 3 months. We emphasize highlighting advances in science, engineering, and technology with originality and rapidity. Contributions include, but are not limited to, a variety of topics such as: • Aerospace and Aeronautical Engineering • Coastal and Ocean Engineering • Environment and Energy Engineering • Material and Structure Engineering • Biomedical Engineering • Mechanical and Transportation Engineering • Civil and Hydraulic Engineering Theoretical and Applied Mechanics Letters (TAML) was launched in 2011 and sponsored by Institute of Mechanics, Chinese Academy of Sciences (IMCAS) and The Chinese Society of Theoretical and Applied Mechanics (CSTAM). It is the official publication the Beijing International Center for Theoretical and Applied Mechanics (BICTAM).