Changepoint Detection in Heteroscedastic Random Coefficient Autoregressive Models

IF 2.9 2区 数学 Q1 ECONOMICS Journal of Business & Economic Statistics Pub Date : 2022-09-07 DOI:10.1080/07350015.2022.2120485
Lajos Horváth, Lorenzo Trapani
{"title":"Changepoint Detection in Heteroscedastic Random Coefficient Autoregressive Models","authors":"Lajos Horváth, Lorenzo Trapani","doi":"10.1080/07350015.2022.2120485","DOIUrl":null,"url":null,"abstract":"Abstract We propose a family of CUSUM-based statistics to detect the presence of changepoints in the deterministic part of the autoregressive parameter in a Random Coefficient Autoregressive (RCA) sequence. Our tests can be applied irrespective of whether the sequence is stationary or not, and no prior knowledge of stationarity or lack thereof is required. Similarly, our tests can be applied even when the error term and the stochastic part of the autoregressive coefficient are non iid, covering the cases of conditional volatility and shifts in the variance, again without requiring any prior knowledge as to the presence or type thereof. In order to ensure the ability to detect breaks at sample endpoints, we propose weighted CUSUM statistics, deriving the asymptotics for virtually all possible weighing schemes, including the standardized CUSUM process (for which we derive a Darling-Erdős theorem) and even heavier weights (so-called Rényi statistics). Simulations show that our procedures work very well in finite samples. We complement our theory with an application to several financial time series.","PeriodicalId":50247,"journal":{"name":"Journal of Business & Economic Statistics","volume":"41 1","pages":"1300 - 1314"},"PeriodicalIF":2.9000,"publicationDate":"2022-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Business & Economic Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07350015.2022.2120485","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 6

Abstract

Abstract We propose a family of CUSUM-based statistics to detect the presence of changepoints in the deterministic part of the autoregressive parameter in a Random Coefficient Autoregressive (RCA) sequence. Our tests can be applied irrespective of whether the sequence is stationary or not, and no prior knowledge of stationarity or lack thereof is required. Similarly, our tests can be applied even when the error term and the stochastic part of the autoregressive coefficient are non iid, covering the cases of conditional volatility and shifts in the variance, again without requiring any prior knowledge as to the presence or type thereof. In order to ensure the ability to detect breaks at sample endpoints, we propose weighted CUSUM statistics, deriving the asymptotics for virtually all possible weighing schemes, including the standardized CUSUM process (for which we derive a Darling-Erdős theorem) and even heavier weights (so-called Rényi statistics). Simulations show that our procedures work very well in finite samples. We complement our theory with an application to several financial time series.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
异方差随机系数自回归模型的变化点检测
摘要我们提出了一组基于CUSUM的统计量来检测随机系数自回归(RCA)序列中自回归参数的确定部分中是否存在变化点。无论序列是否平稳,我们的测试都可以应用,并且不需要事先了解平稳性或缺乏平稳性。类似地,即使误差项和自回归系数的随机部分是非iid的,我们的测试也可以应用,涵盖了条件波动和方差变化的情况,同样不需要任何关于其存在或类型的先验知识。为了确保检测样本端点中断的能力,我们提出了加权CUSUM统计,推导出几乎所有可能的加权方案的渐近性,包括标准化CUSUM过程(为此我们推导出Darling Erdõs定理)和更重的权重(所谓的Rényi统计)。仿真表明,我们的程序在有限样本中运行良好。我们用几个金融时间序列的应用来补充我们的理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Business & Economic Statistics
Journal of Business & Economic Statistics 数学-统计学与概率论
CiteScore
5.00
自引率
6.70%
发文量
98
审稿时长
>12 weeks
期刊介绍: The Journal of Business and Economic Statistics (JBES) publishes a range of articles, primarily applied statistical analyses of microeconomic, macroeconomic, forecasting, business, and finance related topics. More general papers in statistics, econometrics, computation, simulation, or graphics are also appropriate if they are immediately applicable to the journal''s general topics of interest. Articles published in JBES contain significant results, high-quality methodological content, excellent exposition, and usually include a substantive empirical application.
期刊最新文献
A Ridge-Regularized Jackknifed Anderson-Rubin Test. Efficient and Robust Estimation of the Generalized LATE Model Modeling and Forecasting Macroeconomic Downside Risk* Causal inference under outcome-based sampling with monotonicity assumptions Functional-Coefficient Quantile Regression for Panel Data with Latent Group Structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1