{"title":"2D/3D Fully Decoupled, Unconditionally Energy Stable Rotational Velocity Projection Method for Incompressible MHD System","authors":"Ke Zhang, Haiyan Su, Demin Liu","doi":"10.1007/s00021-023-00823-6","DOIUrl":null,"url":null,"abstract":"<div><p>The first order linear, fully decoupled rotational velocity projection scheme for settling 2D/3D incompressible magneto-hydrodynamic system is considered in this paper. The considered governing model is a strong nonlinear system and also a double saddle points system. The proposed scheme mainly apply the first order Euler semi implicit scheme for temporal discretization, delicate implicit–explicit treatments for handling the strong nonlinear terms, and the mixed finite element method is used for spatial discretization. Then the system can be transformed into a series of linear elliptic equations such that the all variables are fully decoupled. More importantly, the existence of rotational term in the proposed algorithm makes the theoretical analysis quite difficult to carry out. Therefore, with the help of a Gauge–Uzawa form that we derive the unconditional energy stability. The results of 2D/3D numerical simulations are proved compact with the theoretical analysis.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"25 4","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-023-00823-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The first order linear, fully decoupled rotational velocity projection scheme for settling 2D/3D incompressible magneto-hydrodynamic system is considered in this paper. The considered governing model is a strong nonlinear system and also a double saddle points system. The proposed scheme mainly apply the first order Euler semi implicit scheme for temporal discretization, delicate implicit–explicit treatments for handling the strong nonlinear terms, and the mixed finite element method is used for spatial discretization. Then the system can be transformed into a series of linear elliptic equations such that the all variables are fully decoupled. More importantly, the existence of rotational term in the proposed algorithm makes the theoretical analysis quite difficult to carry out. Therefore, with the help of a Gauge–Uzawa form that we derive the unconditional energy stability. The results of 2D/3D numerical simulations are proved compact with the theoretical analysis.
期刊介绍:
The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.