Introduction of pruning based on measures of association in the expansion phase of the induction algorithm CART: a case study of pre-university orientation for Sidi Mohamed Ben Abdelah University
{"title":"Introduction of pruning based on measures of association in the expansion phase of the induction algorithm CART: a case study of pre-university orientation for Sidi Mohamed Ben Abdelah University","authors":"Imane Satauri, O. Beqqali","doi":"10.1504/IJSSS.2017.10006643","DOIUrl":null,"url":null,"abstract":"Determining the right size of the tree is a crucial operation in the construction of a decision tree on the basis of a large volume of data. It largely determines its performance during its deployment in the population. This, in fact, considers the avoidance of two extremes: the sub-study, defined by a reduced tree, poorly capturing relevant information of the learning data; the over-learning, defined by an exaggerated size of the tree, capturing the specifics of the learning data, characteristics that can not be transposed in the population. In both cases, we have a less performing prediction model. This paper presents an approach of indirect pre-pruning introduced within the algorithm classification and regression tree (CART) expansion phase; it is based on the rules generated from the decision tree and uses validation criteria inspired from the data mining techniques to discover association rules.","PeriodicalId":89681,"journal":{"name":"International journal of society systems science","volume":"9 1","pages":"165"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of society systems science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJSSS.2017.10006643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Determining the right size of the tree is a crucial operation in the construction of a decision tree on the basis of a large volume of data. It largely determines its performance during its deployment in the population. This, in fact, considers the avoidance of two extremes: the sub-study, defined by a reduced tree, poorly capturing relevant information of the learning data; the over-learning, defined by an exaggerated size of the tree, capturing the specifics of the learning data, characteristics that can not be transposed in the population. In both cases, we have a less performing prediction model. This paper presents an approach of indirect pre-pruning introduced within the algorithm classification and regression tree (CART) expansion phase; it is based on the rules generated from the decision tree and uses validation criteria inspired from the data mining techniques to discover association rules.