Model-Based Simulation Approach for Pre-Front End Engineering Design Studies for Subsea Field Architecture Development

IF 1.4 4区 工程技术 Q2 ENGINEERING, PETROLEUM Spe Production & Operations Pub Date : 2021-06-01 DOI:10.2118/205508-PA
Hamdi Mnasri, M. Franchek, Taoufik Wassar, Yingjie Tang, A. Meziou
{"title":"Model-Based Simulation Approach for Pre-Front End Engineering Design Studies for Subsea Field Architecture Development","authors":"Hamdi Mnasri, M. Franchek, Taoufik Wassar, Yingjie Tang, A. Meziou","doi":"10.2118/205508-PA","DOIUrl":null,"url":null,"abstract":"\n Presented is a model-based methodology identifying subsea field architectures that satisfy prespecified multiphysics constraints. The proposed methodology prioritizes the identified subsea system using a multiobjective optimization approach considering two objective functions, which are minimizing pressure drop reflecting the maximization of production flow rates and minimizing capital expenditures. The architecture solutions produce manifolds positioning and optimal pipeline routing/sizing. A convex combination approach creates the multiobjective optimization criterion enabling weighting among constraints such as hydraulic, topological, structural, and flow assurance, as well as technical issues and financial limitations. The optimization problem is computationally solved using a hybrid method with a global multistart algorithm that combines a scatter search process with a gradient-based local nonlinear problem solver. A case study is provided to test the proposed methodology including the effect of varying the weights among the constraints. This deep-dive analysis demonstrates the potential offered by the proposed methodology, illustrated by the ability to perform several investigations such as wells-grouping analysis and insulation effect on the overall optimization procedure, as well as to provide a tracking tool for flow-assurance factors, namely erosion and corrosion rates along the subsea layout. Hence, we present a demonstration of the capabilities of the proposed model-based subsea field layout optimization procedure.","PeriodicalId":22071,"journal":{"name":"Spe Production & Operations","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spe Production & Operations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2118/205508-PA","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, PETROLEUM","Score":null,"Total":0}
引用次数: 2

Abstract

Presented is a model-based methodology identifying subsea field architectures that satisfy prespecified multiphysics constraints. The proposed methodology prioritizes the identified subsea system using a multiobjective optimization approach considering two objective functions, which are minimizing pressure drop reflecting the maximization of production flow rates and minimizing capital expenditures. The architecture solutions produce manifolds positioning and optimal pipeline routing/sizing. A convex combination approach creates the multiobjective optimization criterion enabling weighting among constraints such as hydraulic, topological, structural, and flow assurance, as well as technical issues and financial limitations. The optimization problem is computationally solved using a hybrid method with a global multistart algorithm that combines a scatter search process with a gradient-based local nonlinear problem solver. A case study is provided to test the proposed methodology including the effect of varying the weights among the constraints. This deep-dive analysis demonstrates the potential offered by the proposed methodology, illustrated by the ability to perform several investigations such as wells-grouping analysis and insulation effect on the overall optimization procedure, as well as to provide a tracking tool for flow-assurance factors, namely erosion and corrosion rates along the subsea layout. Hence, we present a demonstration of the capabilities of the proposed model-based subsea field layout optimization procedure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模型的仿真方法用于海底油田体系结构开发的前端工程设计研究
提出了一种基于模型的方法来识别满足预先指定的多物理场约束的海底油田架构。所提出的方法采用多目标优化方法,考虑两个目标函数,即最大限度地减少压力降,从而最大限度地提高生产流量,并最大限度地减少资本支出,从而对已确定的海底系统进行优先级排序。架构解决方案产生歧管定位和最佳的管道路由/尺寸。一种凸组合方法创建了多目标优化标准,可以在诸如水力、拓扑、结构、流动保证、技术问题和财务限制等约束因素之间进行加权。采用一种将分散搜索过程与基于梯度的局部非线性问题求解器相结合的全局多启动算法的混合方法对优化问题进行了计算求解。通过一个案例研究来验证所提出的方法,包括在约束条件之间改变权重的影响。这种深度分析证明了所提出方法的潜力,可以进行一些调查,如井组分析和对整体优化过程的保温效果,以及提供流动保证因素(即海底布局的侵蚀和腐蚀速率)的跟踪工具。因此,我们展示了所提出的基于模型的海底油田布局优化程序的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Spe Production & Operations
Spe Production & Operations 工程技术-工程:石油
CiteScore
3.70
自引率
8.30%
发文量
54
审稿时长
3 months
期刊介绍: SPE Production & Operations includes papers on production operations, artificial lift, downhole equipment, formation damage control, multiphase flow, workovers, stimulation, facility design and operations, water treatment, project management, construction methods and equipment, and related PFC systems and emerging technologies.
期刊最新文献
Implementation of a New Proprietary Vortex Fluid Sucker Rod Pump System to Improve Production by Enhancing Flow Dynamics Geomechanical Modeling of Fracture-Induced Vertical Strain Measured by Distributed Fiber-Optic Strain Sensing Kaolinite Effects on Injectivity Impairment: Field Evidence and Laboratory Results Emulsification Characteristics and Electrolyte-Optimized Demulsification of Produced Liquid from Polymer Flooding on Alaska North Slope Dimensionless Artificial Intelligence-Based Model for Multiphase Flow Pattern Recognition in Horizontal Pipe
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1