Sources of Finite Speed Temperature Propagation

IF 4.3 3区 工程技术 Q1 MECHANICS Journal of Non-Equilibrium Thermodynamics Pub Date : 2022-02-09 DOI:10.1515/jnet-2021-0078
P. M. Mariano, M. Spadini
{"title":"Sources of Finite Speed Temperature Propagation","authors":"P. M. Mariano, M. Spadini","doi":"10.1515/jnet-2021-0078","DOIUrl":null,"url":null,"abstract":"Abstract The relation between heat flux and temperature gradient has been considered as a constitutive structure or as a balance law in different approaches. Both views may allow a description of heat conduction characterized by finite speed propagation of temperature disturbances. Such a result, which overcomes Fourier’s drawback of infinite speed propagation, can be obtained also by considering insufficient the representation of a conductor, even when it is considered to be rigid, rather than the sole relation between heat flux and temperature gradient. We comment this last view and describe the intersection with previous proposals. Eventually, we show how under Fourier’s law we can have traveling-wave-type temperature propagation when thermal microstructures are accounted for.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":"47 1","pages":"165 - 178"},"PeriodicalIF":4.3000,"publicationDate":"2022-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Equilibrium Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/jnet-2021-0078","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract The relation between heat flux and temperature gradient has been considered as a constitutive structure or as a balance law in different approaches. Both views may allow a description of heat conduction characterized by finite speed propagation of temperature disturbances. Such a result, which overcomes Fourier’s drawback of infinite speed propagation, can be obtained also by considering insufficient the representation of a conductor, even when it is considered to be rigid, rather than the sole relation between heat flux and temperature gradient. We comment this last view and describe the intersection with previous proposals. Eventually, we show how under Fourier’s law we can have traveling-wave-type temperature propagation when thermal microstructures are accounted for.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有限速度温度传播的来源
热通量与温度梯度的关系在不同的方法中被认为是一个本构结构或一个平衡定律。这两种观点都可以描述以温度扰动的有限速度传播为特征的热传导。这样的结果,克服了傅里叶无限速度传播的缺点,也可以通过不充分考虑导体的表示来获得,即使它被认为是刚性的,而不是热通量和温度梯度之间的唯一关系。我们评论了最后一个视图,并描述了它与之前的建议的交集。最后,我们展示了如何在傅里叶定律下,当考虑到热微观结构时,我们可以有行波型温度传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
18.20%
发文量
31
审稿时长
1 months
期刊介绍: The Journal of Non-Equilibrium Thermodynamics serves as an international publication organ for new ideas, insights and results on non-equilibrium phenomena in science, engineering and related natural systems. The central aim of the journal is to provide a bridge between science and engineering and to promote scientific exchange on a) newly observed non-equilibrium phenomena, b) analytic or numeric modeling for their interpretation, c) vanguard methods to describe non-equilibrium phenomena. Contributions should – among others – present novel approaches to analyzing, modeling and optimizing processes of engineering relevance such as transport processes of mass, momentum and energy, separation of fluid phases, reproduction of living cells, or energy conversion. The journal is particularly interested in contributions which add to the basic understanding of non-equilibrium phenomena in science and engineering, with systems of interest ranging from the macro- to the nano-level. The Journal of Non-Equilibrium Thermodynamics has recently expanded its scope to place new emphasis on theoretical and experimental investigations of non-equilibrium phenomena in thermophysical, chemical, biochemical and abstract model systems of engineering relevance. We are therefore pleased to invite submissions which present newly observed non-equilibrium phenomena, analytic or fuzzy models for their interpretation, or new methods for their description.
期刊最新文献
Variational approach to chemical reactions beyond local equilibrium Modeling high-pressure viscosities of fatty acid esters and biodiesel fuels based on modified rough hard-sphere-chain model and deep learning method Generalized piezothermoelastic interactions in a piezoelectric rod subjected to pulse heat flux Stochastic dissipative Euler’s equations for a free body Performance prediction and manipulation strategy of a hybrid system based on tubular solid oxide fuel cell and annular thermoelectric generator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1