Optimality and Complexity Analysis of a Branch-and-Bound Method in Solving Some Instances of the Subset Sum Problem

IF 1.1 Q3 COMPUTER SCIENCE, THEORY & METHODS Open Computer Science Pub Date : 2020-12-17 DOI:10.1515/comp-2020-0212
R. Kolpakov, M. Posypkin
{"title":"Optimality and Complexity Analysis of a Branch-and-Bound Method in Solving Some Instances of the Subset Sum Problem","authors":"R. Kolpakov, M. Posypkin","doi":"10.1515/comp-2020-0212","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we study the question of parallelization of a variant of Branch-and-Bound method for solving of the subset sum problem which is a special case of the Boolean knapsack problem. The following natural approach to the solution of this question is considered. At the first stage one of the processors (control processor) performs some number of algorithm steps of solving a given problem with generating some number of subproblems of the problem. In the second stage the generated subproblems are sent to other processors for solving (one subproblem per processor). Processors solve completely the received subproblems and return their solutions to the control processor which chooses the optimal solution of the initial problem from these solutions. For this approach we define formally a model of parallel computing (frontal parallelization scheme) and the notion of complexity of the frontal scheme. We study the asymptotic behavior of the complexity of the frontal scheme for two special cases of the subset sum problem.","PeriodicalId":43014,"journal":{"name":"Open Computer Science","volume":"11 1","pages":"116 - 126"},"PeriodicalIF":1.1000,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/comp-2020-0212","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/comp-2020-0212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper we study the question of parallelization of a variant of Branch-and-Bound method for solving of the subset sum problem which is a special case of the Boolean knapsack problem. The following natural approach to the solution of this question is considered. At the first stage one of the processors (control processor) performs some number of algorithm steps of solving a given problem with generating some number of subproblems of the problem. In the second stage the generated subproblems are sent to other processors for solving (one subproblem per processor). Processors solve completely the received subproblems and return their solutions to the control processor which chooses the optimal solution of the initial problem from these solutions. For this approach we define formally a model of parallel computing (frontal parallelization scheme) and the notion of complexity of the frontal scheme. We study the asymptotic behavior of the complexity of the frontal scheme for two special cases of the subset sum problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分支定界法求解子集和问题若干实例的最优性和复杂性分析
摘要本文研究了布尔背包问题的一个特例——子集和问题的分支定界法的一个变种的并行化问题。以下是解决这个问题的自然方法。在第一阶段,其中一个处理器(控制处理器)执行一定数量的算法步骤来解决给定问题,同时生成该问题的一定数量的子问题。在第二阶段,生成的子问题被发送到其他处理器进行求解(每个处理器一个子问题)。处理器完全解决接收到的子问题,并将它们的解返回给控制处理器,控制处理器从这些解中选择初始问题的最优解。对于这种方法,我们正式定义了并行计算的模型(前沿并行化方案)和前沿方案的复杂性概念。我们研究了子集和问题的两个特殊情况下,前沿格式复杂性的渐近行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Open Computer Science
Open Computer Science COMPUTER SCIENCE, THEORY & METHODS-
CiteScore
4.00
自引率
0.00%
发文量
24
审稿时长
25 weeks
期刊最新文献
Artificial intelligence-based public safety data resource management in smart cities Application of fingerprint image fuzzy edge recognition algorithm in criminal technology Application of SSD network algorithm in panoramic video image vehicle detection system Data preprocessing impact on machine learning algorithm performance RFID supply chain data deconstruction method based on artificial intelligence technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1