Selection of the Number of Participants in Intensive Longitudinal Studies: A User-Friendly Shiny App and Tutorial for Performing Power Analysis in Multilevel Regression Models That Account for Temporal Dependencies

IF 15.6 1区 心理学 Q1 PSYCHOLOGY Advances in Methods and Practices in Psychological Science Pub Date : 2021-01-01 DOI:10.1177/2515245920978738
G. Lafit, J. Adolf, Egon Dejonckheere, I. Myin-Germeys, W. Viechtbauer, E. Ceulemans
{"title":"Selection of the Number of Participants in Intensive Longitudinal Studies: A User-Friendly Shiny App and Tutorial for Performing Power Analysis in Multilevel Regression Models That Account for Temporal Dependencies","authors":"G. Lafit, J. Adolf, Egon Dejonckheere, I. Myin-Germeys, W. Viechtbauer, E. Ceulemans","doi":"10.1177/2515245920978738","DOIUrl":null,"url":null,"abstract":"In recent years, the popularity of procedures for collecting intensive longitudinal data, such as the experience-sampling method, has increased greatly. The data collected using such designs allow researchers to study the dynamics of psychological functioning and how these dynamics differ across individuals. To this end, the data are often modeled with multilevel regression models. An important question that arises when researchers design intensive longitudinal studies is how to determine the number of participants needed to test specific hypotheses regarding the parameters of these models with sufficient power. Power calculations for intensive longitudinal studies are challenging because of the hierarchical data structure in which repeated observations are nested within the individuals and because of the serial dependence that is typically present in these data. We therefore present a user-friendly application and step-by-step tutorial for performing simulation-based power analyses for a set of models that are popular in intensive longitudinal research. Because many studies use the same sampling protocol (i.e., a fixed number of at least approximately equidistant observations) within individuals, we assume that this protocol is fixed and focus on the number of participants. All included models explicitly account for the temporal dependencies in the data by assuming serially correlated errors or including autoregressive effects.","PeriodicalId":55645,"journal":{"name":"Advances in Methods and Practices in Psychological Science","volume":" ","pages":""},"PeriodicalIF":15.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/2515245920978738","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Methods and Practices in Psychological Science","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/2515245920978738","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY","Score":null,"Total":0}
引用次数: 46

Abstract

In recent years, the popularity of procedures for collecting intensive longitudinal data, such as the experience-sampling method, has increased greatly. The data collected using such designs allow researchers to study the dynamics of psychological functioning and how these dynamics differ across individuals. To this end, the data are often modeled with multilevel regression models. An important question that arises when researchers design intensive longitudinal studies is how to determine the number of participants needed to test specific hypotheses regarding the parameters of these models with sufficient power. Power calculations for intensive longitudinal studies are challenging because of the hierarchical data structure in which repeated observations are nested within the individuals and because of the serial dependence that is typically present in these data. We therefore present a user-friendly application and step-by-step tutorial for performing simulation-based power analyses for a set of models that are popular in intensive longitudinal research. Because many studies use the same sampling protocol (i.e., a fixed number of at least approximately equidistant observations) within individuals, we assume that this protocol is fixed and focus on the number of participants. All included models explicitly account for the temporal dependencies in the data by assuming serially correlated errors or including autoregressive effects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
密集纵向研究中参与者数量的选择:一个用户友好的闪亮应用程序和在考虑时间依赖性的多水平回归模型中执行功率分析的教程
近年来,收集密集纵向数据的程序,如经验抽样法,越来越受欢迎。使用这种设计收集的数据使研究人员能够研究心理功能的动力学,以及这些动力学在个体之间的差异。为此,数据通常采用多级回归模型进行建模。当研究人员设计密集的纵向研究时,出现的一个重要问题是如何确定所需的参与者人数,以足够的力量测试关于这些模型参数的特定假设。密集纵向研究的功率计算具有挑战性,因为重复观察嵌套在个体内的分层数据结构,以及这些数据中通常存在的序列依赖性。因此,我们提供了一个用户友好的应用程序和分步教程,用于为一组在深入纵向研究中流行的模型执行基于模拟的功率分析。由于许多研究在个体内使用相同的采样方案(即固定数量的至少近似等距的观察),我们假设该方案是固定的,并关注参与者的数量。所有包含的模型都通过假设序列相关误差或包括自回归效应来明确说明数据中的时间依赖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
21.20
自引率
0.70%
发文量
16
期刊介绍: In 2021, Advances in Methods and Practices in Psychological Science will undergo a transition to become an open access journal. This journal focuses on publishing innovative developments in research methods, practices, and conduct within the field of psychological science. It embraces a wide range of areas and topics and encourages the integration of methodological and analytical questions. The aim of AMPPS is to bring the latest methodological advances to researchers from various disciplines, even those who are not methodological experts. Therefore, the journal seeks submissions that are accessible to readers with different research interests and that represent the diverse research trends within the field of psychological science. The types of content that AMPPS welcomes include articles that communicate advancements in methods, practices, and metascience, as well as empirical scientific best practices. Additionally, tutorials, commentaries, and simulation studies on new techniques and research tools are encouraged. The journal also aims to publish papers that bring advances from specialized subfields to a broader audience. Lastly, AMPPS accepts Registered Replication Reports, which focus on replicating important findings from previously published studies. Overall, the transition of Advances in Methods and Practices in Psychological Science to an open access journal aims to increase accessibility and promote the dissemination of new developments in research methods and practices within the field of psychological science.
期刊最新文献
Bayesian Analysis of Cross-Sectional Networks: A Tutorial in R and JASP Conducting Research With People in Lower-Socioeconomic-Status Contexts Keeping Meta-Analyses Alive and Well: A Tutorial on Implementing and Using Community-Augmented Meta-Analyses in PsychOpen CAMA A Practical Guide to Conversation Research: How to Study What People Say to Each Other Impossible Hypotheses and Effect-Size Limits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1