{"title":"Predefined-time synchronization of 5D Hindmarsh–Rose neuron networks via backstepping design and application in secure communication","authors":"Lixiong Lin","doi":"10.15388/namc.2022.27.26557","DOIUrl":null,"url":null,"abstract":"In this paper, the fast synchronization problem of 5D Hindmarsh–Rose neuron networks is studied. Firstly, the global predefined-time stability of a class of nonlinear dynamical systems is investigated under the complete beta function. Then an active controller via backstepping design is proposed to achieve predefined-time synchronization of two 5D Hindmarsh–Rose neuron networks in which the synchronization time of each state variable of the master-slave 5D Hindmarsh–Rose neuron networks is different and can be defined in advance, respectively. To show the applicability of the obtained theoretical results, the designed predefined-time backstepping controller is applied to secure communication to realize asynchronous communication of multiple different messages. Three numerical simulations are provided to validate the theoretical results.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15388/namc.2022.27.26557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper, the fast synchronization problem of 5D Hindmarsh–Rose neuron networks is studied. Firstly, the global predefined-time stability of a class of nonlinear dynamical systems is investigated under the complete beta function. Then an active controller via backstepping design is proposed to achieve predefined-time synchronization of two 5D Hindmarsh–Rose neuron networks in which the synchronization time of each state variable of the master-slave 5D Hindmarsh–Rose neuron networks is different and can be defined in advance, respectively. To show the applicability of the obtained theoretical results, the designed predefined-time backstepping controller is applied to secure communication to realize asynchronous communication of multiple different messages. Three numerical simulations are provided to validate the theoretical results.