Influence of Defects in Surface Layer of Al2O3/TiC and SiAlON Ceramics on Physical and Mechanical Characteristics

IF 2.7 Q1 MATERIALS SCIENCE, CERAMICS Ceramics-Switzerland Pub Date : 2023-03-24 DOI:10.3390/ceramics6020047
S. Grigoriev, M. Volosova, A. Okunkova, S. Fedorov
{"title":"Influence of Defects in Surface Layer of Al2O3/TiC and SiAlON Ceramics on Physical and Mechanical Characteristics","authors":"S. Grigoriev, M. Volosova, A. Okunkova, S. Fedorov","doi":"10.3390/ceramics6020047","DOIUrl":null,"url":null,"abstract":"The paper studies the influence of diamond grinding, lapping, and polishing on the surface layer and defectiveness of the Al2O3/TiC and SiAlON ceramic samples. The index of defectiveness ID, which is the product of the defect density and the defective layer’s thickness (Rt), and a method for its evaluation are proposed to quantify the defectiveness of the ceramic surfaces. Lapping reduces the Rt parameter by 2.6–2.7 times when the density of defects was decreased by 2 times. After polishing, the Rt parameter decreases to 0.42 μm for Al2O3/TiC and 0.37 μm for SiAlON samples. The density of defects decreases many times after polishing: up to 0.005 and 0.004, respectively. The crack resistance of the polished samples increased by 5–7%. The volumetric wear of polished samples decreased by 1.5–1.9 times compared to the ground ones after 20 min of abrasion wear. The polished samples show a decrease in the coefficient of friction at 800 °C and a decrease in the volumetric wear by 1.5 and 1.3 times, respectively, compared to the ground ones after 200 m of friction distance. The volumetric wear at high-temperature friction of sliding for polished specimens was 55% and 42% less than for the ground ones, respectively.","PeriodicalId":33263,"journal":{"name":"Ceramics-Switzerland","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics-Switzerland","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ceramics6020047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 3

Abstract

The paper studies the influence of diamond grinding, lapping, and polishing on the surface layer and defectiveness of the Al2O3/TiC and SiAlON ceramic samples. The index of defectiveness ID, which is the product of the defect density and the defective layer’s thickness (Rt), and a method for its evaluation are proposed to quantify the defectiveness of the ceramic surfaces. Lapping reduces the Rt parameter by 2.6–2.7 times when the density of defects was decreased by 2 times. After polishing, the Rt parameter decreases to 0.42 μm for Al2O3/TiC and 0.37 μm for SiAlON samples. The density of defects decreases many times after polishing: up to 0.005 and 0.004, respectively. The crack resistance of the polished samples increased by 5–7%. The volumetric wear of polished samples decreased by 1.5–1.9 times compared to the ground ones after 20 min of abrasion wear. The polished samples show a decrease in the coefficient of friction at 800 °C and a decrease in the volumetric wear by 1.5 and 1.3 times, respectively, compared to the ground ones after 200 m of friction distance. The volumetric wear at high-temperature friction of sliding for polished specimens was 55% and 42% less than for the ground ones, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Al2O3/TiC和SiAlON陶瓷表层缺陷对物理力学特性的影响
研究了金刚石研磨、研磨和抛光对Al2O3/TiC和SiAlON陶瓷样品表面层和缺陷的影响。提出了缺陷密度和缺陷层厚度(Rt)的乘积缺陷ID指数及其评估方法,以量化陶瓷表面的缺陷。当缺陷密度降低2倍时,研磨将Rt参数降低2.6–2.7倍。抛光后,Al2O3/TiC样品的Rt参数降至0.42μm,SiAlON样品的Rt参数降至0.37μm。抛光后,缺陷密度降低了很多倍:分别高达0.005和0.004。抛光样品的抗裂性提高了5–7%。磨损20分钟后,抛光样品的体积磨损比研磨样品减少了1.5–1.9倍。抛光样品在800°C下的摩擦系数下降,在200 m摩擦距离后的体积磨损分别比研磨样品下降1.5倍和1.3倍。抛光试样在高温滑动摩擦下的体积磨损分别比研磨试样小55%和42%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.00
自引率
7.10%
发文量
66
审稿时长
10 weeks
期刊最新文献
Non-Invasive On-Site XRF and Raman Classification and Dating of Ancient Ceramics: Application to 18th and 19th Century Meissen Porcelain (Saxony) and Comparison with Chinese Porcelain Biomechanical Behavior of Lithium-Disilicate-Modified Endocrown Restorations: A Three-Dimensional Finite Element Analysis Preparation and Characterization of Freeze-Dried β-Tricalcium Phosphate/Barium Titanate/Collagen Composite Scaffolds for Bone Tissue Engineering in Orthopedic Applications Ceramic Filters for the Efficient Removal of Azo Dyes and Pathogens in Water Bioinspired Mechanical Materials—Development of High-Toughness Ceramics through Complexation of Calcium Phosphate and Organic Polymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1