{"title":"Probabilistic assessment of complex system consisting three subsystems, multi-failure threats and copula repair approach","authors":"A. Jibril, V. V. Singh, D. K. Rawal","doi":"10.1108/ijqrm-03-2021-0061","DOIUrl":null,"url":null,"abstract":"PurposeThe purpose of this paper is to deliberate the system reliability of a system in combination of three subsystems in a series configuration in which all three subsystems function under a k-out-of-n: G operational scheme. Based on computed results, it has been demonstrated that copula repair is better than general repair for system better performance. The supplementary variable approach with implications of copula distribution has been employed for assessing the system performance.Design/methodology/approachProbabilistic assessment of complex system consisting three subsystems, multi-failure threats and copula repair approach is used in this study. Abbas Jubrin Bin, V.V. Singh, D.K. Rawal, in this research paper, have analyzed a system consisting of three subsystems in a series configuration in which all three subsystems function under a k-out-of-n: G operational scheme. The supplementary variable approach with implications of copula distribution has been employed for assessing the system performance. Based on computed results, it has been demonstrated that copula repair is better than general repair for system better performance.FindingsIn this analysis, four different cases of availability are analysed for Gumbel–Hougaard family copula and also four cases for general repair with similar failure rates are studied. The authors found that when failure rates increase, the system availability decreases, and when the system follows copula repair distribution, the system availability is better than general repair.Research limitations/implicationsThis research may be implemented in various industrial systems where the subsystems are configured under k-out-of-n: G working policy. It is also advisable that copula repair is highly recommended for best performances from the system. On the basis of mean time to system failure (MTSF) computations, the failure rate which affects system failure more needs to be controlled by monitoring, servicing and replacing stratagem.Practical implicationsThis research work has great implications in various industrial systems like power plant systems, nuclear power plant, electricity distributions system, etc. where the k-out-of-n-type of system operation scheme is validated for system operations with the multi-repair.Originality/valueThis work is a new work by authors. In the previously available technical analysis of the system, the researchers have analyzed the repairable system either supplementary variable approach, supplementary variable and system which have two subsystems in a series configuration. This research work analyzed a system with three subsystems with a multi-repair approach and supplementary variables.","PeriodicalId":14193,"journal":{"name":"International Journal of Quality & Reliability Management","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2022-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quality & Reliability Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijqrm-03-2021-0061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 2
Abstract
PurposeThe purpose of this paper is to deliberate the system reliability of a system in combination of three subsystems in a series configuration in which all three subsystems function under a k-out-of-n: G operational scheme. Based on computed results, it has been demonstrated that copula repair is better than general repair for system better performance. The supplementary variable approach with implications of copula distribution has been employed for assessing the system performance.Design/methodology/approachProbabilistic assessment of complex system consisting three subsystems, multi-failure threats and copula repair approach is used in this study. Abbas Jubrin Bin, V.V. Singh, D.K. Rawal, in this research paper, have analyzed a system consisting of three subsystems in a series configuration in which all three subsystems function under a k-out-of-n: G operational scheme. The supplementary variable approach with implications of copula distribution has been employed for assessing the system performance. Based on computed results, it has been demonstrated that copula repair is better than general repair for system better performance.FindingsIn this analysis, four different cases of availability are analysed for Gumbel–Hougaard family copula and also four cases for general repair with similar failure rates are studied. The authors found that when failure rates increase, the system availability decreases, and when the system follows copula repair distribution, the system availability is better than general repair.Research limitations/implicationsThis research may be implemented in various industrial systems where the subsystems are configured under k-out-of-n: G working policy. It is also advisable that copula repair is highly recommended for best performances from the system. On the basis of mean time to system failure (MTSF) computations, the failure rate which affects system failure more needs to be controlled by monitoring, servicing and replacing stratagem.Practical implicationsThis research work has great implications in various industrial systems like power plant systems, nuclear power plant, electricity distributions system, etc. where the k-out-of-n-type of system operation scheme is validated for system operations with the multi-repair.Originality/valueThis work is a new work by authors. In the previously available technical analysis of the system, the researchers have analyzed the repairable system either supplementary variable approach, supplementary variable and system which have two subsystems in a series configuration. This research work analyzed a system with three subsystems with a multi-repair approach and supplementary variables.
期刊介绍:
In today''s competitive business and industrial environment, it is essential to have an academic journal offering the most current theoretical knowledge on quality and reliability to ensure that top management is fully conversant with new thinking, techniques and developments in the field. The International Journal of Quality & Reliability Management (IJQRM) deals with all aspects of business improvements and with all aspects of manufacturing and services, from the training of (senior) managers, to innovations in organising and processing to raise standards of product and service quality. It is this unique blend of theoretical knowledge and managerial relevance that makes IJQRM a valuable resource for managers striving for higher standards.Coverage includes: -Reliability, availability & maintenance -Gauging, calibration & measurement -Life cycle costing & sustainability -Reliability Management of Systems -Service Quality -Green Marketing -Product liability -Product testing techniques & systems -Quality function deployment -Reliability & quality education & training -Productivity improvement -Performance improvement -(Regulatory) standards for quality & Quality Awards -Statistical process control -System modelling -Teamwork -Quality data & datamining