The how and why of Bayesian nonparametric causal inference

IF 4.4 2区 数学 Q1 STATISTICS & PROBABILITY Wiley Interdisciplinary Reviews-Computational Statistics Pub Date : 2021-11-06 DOI:10.1002/wics.1583
A. Linero, Joseph Antonelli
{"title":"The how and why of Bayesian nonparametric causal inference","authors":"A. Linero, Joseph Antonelli","doi":"10.1002/wics.1583","DOIUrl":null,"url":null,"abstract":"Spurred on by recent successes in causal inference competitions, Bayesian nonparametric (and high‐dimensional) methods have recently seen increased attention in the causal inference literature. In this article, we present a comprehensive overview of Bayesian nonparametric applications to causal inference. Our aims are to (i) introduce the fundamental Bayesian nonparametric toolkit; (ii) discuss how to determine which tool is most appropriate for a given problem; and (iii) show how to avoid common pitfalls in applying Bayesian nonparametric methods in high‐dimensional settings. Unlike standard fixed‐dimensional parametric problems, where outcome modeling alone can sometimes be effective, we argue that most of the time it is necessary to model both the selection and outcome processes.","PeriodicalId":47779,"journal":{"name":"Wiley Interdisciplinary Reviews-Computational Statistics","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2021-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/wics.1583","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 9

Abstract

Spurred on by recent successes in causal inference competitions, Bayesian nonparametric (and high‐dimensional) methods have recently seen increased attention in the causal inference literature. In this article, we present a comprehensive overview of Bayesian nonparametric applications to causal inference. Our aims are to (i) introduce the fundamental Bayesian nonparametric toolkit; (ii) discuss how to determine which tool is most appropriate for a given problem; and (iii) show how to avoid common pitfalls in applying Bayesian nonparametric methods in high‐dimensional settings. Unlike standard fixed‐dimensional parametric problems, where outcome modeling alone can sometimes be effective, we argue that most of the time it is necessary to model both the selection and outcome processes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
贝叶斯非参数因果推理的方法和原因
由于最近在因果推理竞赛中取得的成功,贝叶斯非参数(和高维)方法最近在因果推理文献中得到了越来越多的关注。在这篇文章中,我们全面概述了贝叶斯非参数在因果推理中的应用。我们的目标是(i)介绍基本的贝叶斯非参数工具包;(ii)讨论如何确定哪种工具最适合给定的问题;(iii)展示如何避免在高维环境中应用贝叶斯非参数方法的常见缺陷。与标准的固定维参数问题不同,结果建模有时是有效的,我们认为大多数时候有必要同时对选择和结果过程进行建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
31
期刊最新文献
Neuroimaging statistical approaches for determining neural correlates of Alzheimer's disease via positron emission tomography imaging. A spectrum of explainable and interpretable machine learning approaches for genomic studies Functional neuroimaging in the era of Big Data and Open Science: A modern overview Information criteria for model selection Data Integration in Causal Inference.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1