M. Abdul-Hammed, Ibrahim Adedotun Olaide, H. Adegoke, M. Olajide, Oluwasegun Johnson Osilade, Tolulope Irapada Afolabi, Adelayo Idayat Abdul-Hammed
{"title":"Antifungal Activities of Phytochemicals from Annona muricate (Sour Sop): Molecular Docking and Chemoinformatics Approach","authors":"M. Abdul-Hammed, Ibrahim Adedotun Olaide, H. Adegoke, M. Olajide, Oluwasegun Johnson Osilade, Tolulope Irapada Afolabi, Adelayo Idayat Abdul-Hammed","doi":"10.22146/mot.77380","DOIUrl":null,"url":null,"abstract":"Fungal infection has become a persistent problem in humans and is sometimes life-threatening in immune-compromised individuals. This work aims to study phytochemicals from Annona muricata (sour sop) as probable antifungal agents against Candida albicans sterol 14α-demethylase target receptor by Computer Aided-Drug Design (CADD) approach using voriconazole and fluconazole as standard drugs. A modern method of drug discovery by molecular docking and chemoinformatics was used to screen 131 isolated phytochemicals with medicinal properties from Annona muricata against Candida albicans ‘sterol 14α-demethylase, a prominent target receptor for most anti-fungal drugs, towards the development of new anti-fungal therapeutic agents and a new approach to treat patients with fungal infections. The compounds were all subjected to analyses like ADMET, drug-likeness, bioactivity, oral-bioavailability and PASS. The results of the docking simulation and chemoinformatics analyses showed that muricin M (-7.9 kcal/mol), chlorogenic acid (-8.2 kcal/mol), roseoside (-8.5 kcal/mol) and caffeoylquinic acid (-8.1 kcal/mol) are potential drug candidates for treating fungal infections due to their excellent properties such as binding affinities, ADMET profile, drug-likeness, bioactivity, binding mode and interactions with the target receptor. Thus, muricin M, chlorogenic acid, roseoside and caffeoylquinic acid are recommended for further analyses towards the development of further antifungal drugs.","PeriodicalId":32438,"journal":{"name":"Majalah Obat Tradisional","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Majalah Obat Tradisional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/mot.77380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Fungal infection has become a persistent problem in humans and is sometimes life-threatening in immune-compromised individuals. This work aims to study phytochemicals from Annona muricata (sour sop) as probable antifungal agents against Candida albicans sterol 14α-demethylase target receptor by Computer Aided-Drug Design (CADD) approach using voriconazole and fluconazole as standard drugs. A modern method of drug discovery by molecular docking and chemoinformatics was used to screen 131 isolated phytochemicals with medicinal properties from Annona muricata against Candida albicans ‘sterol 14α-demethylase, a prominent target receptor for most anti-fungal drugs, towards the development of new anti-fungal therapeutic agents and a new approach to treat patients with fungal infections. The compounds were all subjected to analyses like ADMET, drug-likeness, bioactivity, oral-bioavailability and PASS. The results of the docking simulation and chemoinformatics analyses showed that muricin M (-7.9 kcal/mol), chlorogenic acid (-8.2 kcal/mol), roseoside (-8.5 kcal/mol) and caffeoylquinic acid (-8.1 kcal/mol) are potential drug candidates for treating fungal infections due to their excellent properties such as binding affinities, ADMET profile, drug-likeness, bioactivity, binding mode and interactions with the target receptor. Thus, muricin M, chlorogenic acid, roseoside and caffeoylquinic acid are recommended for further analyses towards the development of further antifungal drugs.