User-Centric Edge Sharing Mechanism in Software-Defined Ultra-Dense Networks

IF 13.8 1区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal on Selected Areas in Communications Pub Date : 2020-04-16 DOI:10.1109/JSAC.2020.2986871
D. Wu, Junjie Yan, Honggang Wang, Ruyang Wang
{"title":"User-Centric Edge Sharing Mechanism in Software-Defined Ultra-Dense Networks","authors":"D. Wu, Junjie Yan, Honggang Wang, Ruyang Wang","doi":"10.1109/JSAC.2020.2986871","DOIUrl":null,"url":null,"abstract":"The emerging mobile edge computing (MEC) evolutionarily extends the cloud services to the network edge. In order to efficiently coordinate distributed edge resources, software defined networking (SDN) at the network edge has been explored to realize the integrated management of communication, computation, and cache (3C) resources. However, many research efforts, in software-defined edge networks, are mainly devoted to 1C or 2C resource sharing. Motivated by high service performance and user demands, we propose a user-centric edge resource sharing model for software-defined ultra-dense network (SD-UDN) where multiple MEC servers around small base stations (SBSs) can share their 3C resources through OpenFlow-enabled switches. In particular, the service models of MEC servers and users are formulated to optimize the service process by minimizing the service delay, which is NP-hard. To address this NP-hard issue, a service association model is constructed based on design structure matrix (DSM), and a simulated annealing algorithm is employed to further optimize the service association model for reducing time complexity and offering a nearoptimal solution. Compared with traditional 1C or 2C resource sharing, the proposed edge resource sharing model can guarantee lower service delay for users.","PeriodicalId":13243,"journal":{"name":"IEEE Journal on Selected Areas in Communications","volume":"38 1","pages":"1531-1541"},"PeriodicalIF":13.8000,"publicationDate":"2020-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/JSAC.2020.2986871","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Selected Areas in Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/JSAC.2020.2986871","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 33

Abstract

The emerging mobile edge computing (MEC) evolutionarily extends the cloud services to the network edge. In order to efficiently coordinate distributed edge resources, software defined networking (SDN) at the network edge has been explored to realize the integrated management of communication, computation, and cache (3C) resources. However, many research efforts, in software-defined edge networks, are mainly devoted to 1C or 2C resource sharing. Motivated by high service performance and user demands, we propose a user-centric edge resource sharing model for software-defined ultra-dense network (SD-UDN) where multiple MEC servers around small base stations (SBSs) can share their 3C resources through OpenFlow-enabled switches. In particular, the service models of MEC servers and users are formulated to optimize the service process by minimizing the service delay, which is NP-hard. To address this NP-hard issue, a service association model is constructed based on design structure matrix (DSM), and a simulated annealing algorithm is employed to further optimize the service association model for reducing time complexity and offering a nearoptimal solution. Compared with traditional 1C or 2C resource sharing, the proposed edge resource sharing model can guarantee lower service delay for users.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
软件定义超密集网络中以用户为中心的边缘共享机制
新兴的移动边缘计算(MEC)将云服务逐步扩展到网络边缘。为了有效地协调分布式边缘资源,探索了网络边缘的软件定义网络(SDN),实现对通信、计算和缓存(3C)资源的综合管理。然而,在软件定义的边缘网络中,许多研究工作主要致力于1C或2C资源共享。在高服务性能和用户需求的驱动下,我们提出了一种以用户为中心的软件定义超密集网络(SD-UDN)边缘资源共享模型,其中小型基站(SBSs)周围的多个MEC服务器可以通过启用openflow的交换机共享其3C资源。特别是MEC服务器和用户的服务模型,通过最小化服务延迟来优化服务流程,这是NP-hard。为了解决这一np困难问题,基于设计结构矩阵(DSM)构建了服务关联模型,并采用模拟退火算法对服务关联模型进行进一步优化,以降低时间复杂度并提供近似最优解。与传统的1C或2C资源共享相比,本文提出的边缘资源共享模型能够保证用户较低的业务延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
30.00
自引率
4.30%
发文量
234
审稿时长
6 months
期刊介绍: The IEEE Journal on Selected Areas in Communications (JSAC) is a prestigious journal that covers various topics related to Computer Networks and Communications (Q1) as well as Electrical and Electronic Engineering (Q1). Each issue of JSAC is dedicated to a specific technical topic, providing readers with an up-to-date collection of papers in that area. The journal is highly regarded within the research community and serves as a valuable reference. The topics covered by JSAC issues span the entire field of communications and networking, with recent issue themes including Network Coding for Wireless Communication Networks, Wireless and Pervasive Communications for Healthcare, Network Infrastructure Configuration, Broadband Access Networks: Architectures and Protocols, Body Area Networking: Technology and Applications, Underwater Wireless Communication Networks, Game Theory in Communication Systems, and Exploiting Limited Feedback in Tomorrow’s Communication Networks.
期刊最新文献
A Robust Image Semantic Communication System with Multi-Scale Vision Transformer AutoSRv6: Configuration Synthesis for Segment Routing over IPv6 6D Movable Antenna Enhanced Wireless Network Via Discrete Position and Rotation Optimization Dynamic Hybrid Beamforming Designs for ELAA Near-Field Communications Beamforming Design for Semantic-Bit Coexisting Communication System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1