On the Prediction Accuracies of Three Most Known Regularizers : Ridge Regression, The Lasso Estimate and Elastic Net Regularization Methods

Adel Aloraini
{"title":"On the Prediction Accuracies of Three Most Known Regularizers : Ridge Regression, The Lasso Estimate and Elastic Net Regularization Methods","authors":"Adel Aloraini","doi":"10.5121/IJAIA.2017.8603","DOIUrl":null,"url":null,"abstract":"The work in this paper shows intensive empirical experiments using 13 datasets to understand the regularization effectiveness of ridge regression, the lasso estimate, and elastic net regularization methods. The study offers a deep understanding of how the datasets affect the goodness of the prediction accuracy of each regularization method for a given problem given the diversity in the datasets used. The results have shown that datasets play crucial rules on the performance of the regularization method and that the predication accuracy depends heavily on the nature of the sampled datasets.","PeriodicalId":93188,"journal":{"name":"International journal of artificial intelligence & applications","volume":"8 1","pages":"29-36"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5121/IJAIA.2017.8603","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of artificial intelligence & applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/IJAIA.2017.8603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The work in this paper shows intensive empirical experiments using 13 datasets to understand the regularization effectiveness of ridge regression, the lasso estimate, and elastic net regularization methods. The study offers a deep understanding of how the datasets affect the goodness of the prediction accuracy of each regularization method for a given problem given the diversity in the datasets used. The results have shown that datasets play crucial rules on the performance of the regularization method and that the predication accuracy depends heavily on the nature of the sampled datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
岭回归、Lasso估计和弹性网正则化三种常用正则化方法的预测精度
本文使用13个数据集进行了大量的经验实验,以了解岭回归、lasso估计和弹性网正则化方法的正则化效果。该研究提供了一个深入的理解数据集如何影响每个正则化方法对给定问题的预测精度的好坏,因为使用的数据集存在多样性。结果表明,数据集对正则化方法的性能起着至关重要的作用,预测精度在很大程度上取决于采样数据集的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characteristics of Networks Generated by Kernel Growing Neural Gas Identifying Text Classification Failures in Multilingual AI-Generated Content Subverting Characters Stereotypes: Exploring the Role of AI in Stereotype Subversion Performance Evaluation of Block-Sized Algorithms for Majority Vote in Facial Recognition Sentiment Analysis in Indian Elections: Unraveling Public Perception of the Karnataka Elections With Transformers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1