My Health Sensor, My Classifier – Adapting a Trained Classifier to Unlabeled End-User Data

K. Nikolaidis, Stein Kristiansen, T. Plagemann, V. Goebel, K. Liestøl, M. Kankanhalli, G. Traaen, B. Overland, H. Akre, L. Aakerøy, S. Steinshamn
{"title":"My Health Sensor, My Classifier – Adapting a Trained Classifier to Unlabeled End-User Data","authors":"K. Nikolaidis, Stein Kristiansen, T. Plagemann, V. Goebel, K. Liestøl, M. Kankanhalli, G. Traaen, B. Overland, H. Akre, L. Aakerøy, S. Steinshamn","doi":"10.1145/3559767","DOIUrl":null,"url":null,"abstract":"Sleep apnea is a common yet severely under-diagnosed sleep related disorder. Unattended sleep monitoring at home with low-cost sensors can be leveraged for condition detection, and Machine Learning offers a generalized solution for this task. However, patient characteristics, lack of sufficient training data, and other factors can imply a domain shift between training and end-user data and reduced task performance. In this work, we address this issue with the aim to achieve personalization based on the patient’s needs. We present an unsupervised domain adaptation (UDA) solution with the constraint that labeled source data are not directly available. Instead, a classifier trained on the source data is provided. Our solution iteratively labels target data sub-regions based on classifier beliefs, and trains new classifiers from the expanding dataset. Experiments with sleep monitoring datasets and various sensors show that our solution outperforms the classifier trained on the source domain, with a kappa coefficient improvement from 0.012 to 0.242. Additionally, we apply our solution to digit classification DA between three well-established datasets, to investigate its generalizability, and allow for related work comparisons. Even without direct access to the source data, it outperforms several well-established UDA methods in these datasets.","PeriodicalId":72043,"journal":{"name":"ACM transactions on computing for healthcare","volume":"3 1","pages":"1 - 24"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM transactions on computing for healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3559767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sleep apnea is a common yet severely under-diagnosed sleep related disorder. Unattended sleep monitoring at home with low-cost sensors can be leveraged for condition detection, and Machine Learning offers a generalized solution for this task. However, patient characteristics, lack of sufficient training data, and other factors can imply a domain shift between training and end-user data and reduced task performance. In this work, we address this issue with the aim to achieve personalization based on the patient’s needs. We present an unsupervised domain adaptation (UDA) solution with the constraint that labeled source data are not directly available. Instead, a classifier trained on the source data is provided. Our solution iteratively labels target data sub-regions based on classifier beliefs, and trains new classifiers from the expanding dataset. Experiments with sleep monitoring datasets and various sensors show that our solution outperforms the classifier trained on the source domain, with a kappa coefficient improvement from 0.012 to 0.242. Additionally, we apply our solution to digit classification DA between three well-established datasets, to investigate its generalizability, and allow for related work comparisons. Even without direct access to the source data, it outperforms several well-established UDA methods in these datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
我的健康传感器,我的分类器——使经过训练的分类器适应未标记的最终用户数据
睡眠呼吸暂停是一种常见的睡眠相关疾病,但诊断不足。在家中使用低成本传感器进行无人看管的睡眠监测可以用于状态检测,机器学习为这项任务提供了一个通用的解决方案。然而,患者特征、缺乏足够的训练数据和其他因素可能意味着训练和最终用户数据之间的领域转移,从而降低任务绩效。在这项工作中,我们解决这个问题的目的是实现个性化的基础上,病人的需求。本文提出了一种无监督域自适应(UDA)解决方案,该方案具有标记源数据不直接可用的约束。相反,提供了对源数据进行训练的分类器。我们的解决方案基于分类器信念迭代标记目标数据子区域,并从扩展的数据集中训练新的分类器。在睡眠监测数据集和各种传感器上的实验表明,我们的解决方案优于源域训练的分类器,kappa系数从0.012提高到0.242。此外,我们将我们的解决方案应用于三个完善的数据集之间的数字分类数据分析,以研究其通用性,并允许相关的工作比较。即使没有直接访问源数据,它在这些数据集中的性能也优于几种成熟的UDA方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.30
自引率
0.00%
发文量
0
期刊最新文献
A method for comparing time series by untangling time-dependent and independent variations in biological processes AI-assisted Diagnosing, Monitoring, and Treatment of Mental Disorders: A Survey HEalthRecordBERT (HERBERT): leveraging transformers on electronic health records for chronic kidney disease risk stratification iScan: Detection of Colorectal Cancer From CT Scan Images Using Deep Learning A Computation Model to Estimate Interaction Intensity through Non-verbal Behavioral Cues: A Case Study of Intimate Couples under the Impact of Acute Alcohol Consumption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1