{"title":"Microbubble technology for natural rubber latex foam production: The use of various gas-filled microbubbles","authors":"Kuntida Katkeaw, M. Khangkhamano, R. Kokoo","doi":"10.1177/02624893211053672","DOIUrl":null,"url":null,"abstract":"In recent years, microbubble technology has attracted great attention in many application fields including water treatment, food processing, oil recovery, surface cleaning, and therapeutic applications. In this paper, microbubbles (MBs) of air, nitrogen, and argon were applied to produce natural rubber latex foams (NRLFs). The bubbles were generated by flowing the gas through a porous diffuser and latex. The effect of gas source on cellular structure, density, elasticity, indentation hardness, and flammability of the bubbled foams was discussed. Argon MBs offered the latex foams with fine cell diameters and uniform cell size distribution resulting in enhanced elasticity and physical properties of the foams. Indentation hardness index and limiting oxygen index value depended significantly on the gas used. By using the microbubble technique, the future prospects in NRLF production can be expected due to its ability in controllable cellular structure.","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":"1 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/02624893211053672","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2
Abstract
In recent years, microbubble technology has attracted great attention in many application fields including water treatment, food processing, oil recovery, surface cleaning, and therapeutic applications. In this paper, microbubbles (MBs) of air, nitrogen, and argon were applied to produce natural rubber latex foams (NRLFs). The bubbles were generated by flowing the gas through a porous diffuser and latex. The effect of gas source on cellular structure, density, elasticity, indentation hardness, and flammability of the bubbled foams was discussed. Argon MBs offered the latex foams with fine cell diameters and uniform cell size distribution resulting in enhanced elasticity and physical properties of the foams. Indentation hardness index and limiting oxygen index value depended significantly on the gas used. By using the microbubble technique, the future prospects in NRLF production can be expected due to its ability in controllable cellular structure.
期刊介绍:
Cellular Polymers is concerned primarily with the science of foamed materials, the technology and state of the art for processing and fabricating, the engineering techniques and principles of the machines used to produce them economically, and their applications in varied and wide ranging uses where they are making an increasingly valuable contribution.
Potential problems for the industry are also covered, including fire performance of materials, CFC-replacement technology, recycling and environmental legislation. Reviews of technical and commercial advances in the manufacturing and application technologies are also included.
Cellular Polymers covers these and other related topics and also pays particular attention to the ways in which the science and technology of cellular polymers is being developed throughout the world.