A. Lone, Shubhra Sharma, H. Achyuthan, A. Shukla, R. Shah, S. Sangode, F. A. A.
{"title":"Climatic implications of late Holocene loess and intervening paleosols, Southern Zanskar range, northwestern Himalaya","authors":"A. Lone, Shubhra Sharma, H. Achyuthan, A. Shukla, R. Shah, S. Sangode, F. A. A.","doi":"10.1080/02723646.2021.1938501","DOIUrl":null,"url":null,"abstract":"ABSTRACT The loess-paleosol proxy records from mid-latitude Asia have been instrumental in the reconstruction of regional paleoclimate evolution and its relationship with global climatic changes. The present study explores the discrete occurrence of a loess and paleosol sequence (LPS) in the Southern Zanskar Range (SZR), NW Himalaya. Stratigraphic variations in sediment texture, supplemented with geochemical, organic and magnetic proxies, indicate two broad phases of loess accretion (L-1) and paleosol formation (PS-1). The older phase of loess accretion (L-1) is dated between 2.5 ± 0.3 ka and >2.0 ka, whereas the L-2, which fully transformed into the modern soil (MS) probably deposited during the Little Ice Age (LIA) phase. The textural attributes (high sand content) of loess indicate source proximal deposition, whereas the geochemical and magnetic proxies point towards the pre-depositional weathering (in the source area). The PS-1 dated to 2189 ± 296 cal yr BP indicates improved moisture conditions, whereas the MS is assigned to post LIA warm phase. These findings provide an important step towards better understanding the sensitivity of loess accretion and paleosol formation in the SZR linked to late Holocene climate variability.","PeriodicalId":54618,"journal":{"name":"Physical Geography","volume":"44 1","pages":"287 - 306"},"PeriodicalIF":1.1000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/02723646.2021.1938501","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Geography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/02723646.2021.1938501","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT The loess-paleosol proxy records from mid-latitude Asia have been instrumental in the reconstruction of regional paleoclimate evolution and its relationship with global climatic changes. The present study explores the discrete occurrence of a loess and paleosol sequence (LPS) in the Southern Zanskar Range (SZR), NW Himalaya. Stratigraphic variations in sediment texture, supplemented with geochemical, organic and magnetic proxies, indicate two broad phases of loess accretion (L-1) and paleosol formation (PS-1). The older phase of loess accretion (L-1) is dated between 2.5 ± 0.3 ka and >2.0 ka, whereas the L-2, which fully transformed into the modern soil (MS) probably deposited during the Little Ice Age (LIA) phase. The textural attributes (high sand content) of loess indicate source proximal deposition, whereas the geochemical and magnetic proxies point towards the pre-depositional weathering (in the source area). The PS-1 dated to 2189 ± 296 cal yr BP indicates improved moisture conditions, whereas the MS is assigned to post LIA warm phase. These findings provide an important step towards better understanding the sensitivity of loess accretion and paleosol formation in the SZR linked to late Holocene climate variability.
期刊介绍:
Physical Geography disseminates significant research in the environmental sciences, including research that integrates environmental processes and human activities. It publishes original papers devoted to research in climatology, geomorphology, hydrology, biogeography, soil science, human-environment interactions, and research methods in physical geography, and welcomes original contributions on topics at the intersection of two or more of these categories.