Development of a High-Accuracy and Effective Online Calibration Method in CD-CAT Based on Gini Index

IF 1.9 3区 心理学 Q2 EDUCATION & EDUCATIONAL RESEARCH Journal of Educational and Behavioral Statistics Pub Date : 2022-10-03 DOI:10.3102/10769986221126741
Qingrong Tan, Yan Cai, Fen Luo, Dongbo Tu
{"title":"Development of a High-Accuracy and Effective Online Calibration Method in CD-CAT Based on Gini Index","authors":"Qingrong Tan, Yan Cai, Fen Luo, Dongbo Tu","doi":"10.3102/10769986221126741","DOIUrl":null,"url":null,"abstract":"To improve the calibration accuracy and calibration efficiency of cognitive diagnostic computerized adaptive testing (CD-CAT) for new items and, ultimately, contribute to the widespread application of CD-CAT in practice, the current article proposed a Gini-based online calibration method that can simultaneously calibrate the Q-matrix and item parameters of new items. Three simulation studies with simulated and real item banks were conducted to investigate the performance of the proposed method and compare it with the joint estimation algorithm (JEA) and the single-item estimation (SIE) methods. The results indicated that the proposed Gini-based online calibration method yielded higher calibration efficiency than those of the SIE method and outperformed the JEA method on item calibration tasks in terms of both accuracy and efficiency under most experimental conditions.","PeriodicalId":48001,"journal":{"name":"Journal of Educational and Behavioral Statistics","volume":"48 1","pages":"103 - 141"},"PeriodicalIF":1.9000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational and Behavioral Statistics","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3102/10769986221126741","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0

Abstract

To improve the calibration accuracy and calibration efficiency of cognitive diagnostic computerized adaptive testing (CD-CAT) for new items and, ultimately, contribute to the widespread application of CD-CAT in practice, the current article proposed a Gini-based online calibration method that can simultaneously calibrate the Q-matrix and item parameters of new items. Three simulation studies with simulated and real item banks were conducted to investigate the performance of the proposed method and compare it with the joint estimation algorithm (JEA) and the single-item estimation (SIE) methods. The results indicated that the proposed Gini-based online calibration method yielded higher calibration efficiency than those of the SIE method and outperformed the JEA method on item calibration tasks in terms of both accuracy and efficiency under most experimental conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Gini指数的CD-CAT高精度有效在线标定方法研究
为了提高认知诊断计算机自适应测试(CD-CAT)对新项目的校准精度和校准效率,最终促进CD-CAT在实践中的广泛应用,本文提出了一种基于gini的在线校准方法,该方法可以同时校准新项目的q矩阵和项目参数。通过模拟和真实物项库的仿真研究,研究了该方法的性能,并将其与联合估计算法(JEA)和单项估计方法(SIE)进行了比较。结果表明,在大多数实验条件下,基于基尼系数的在线校准方法的校准效率高于SIE方法,在项目校准任务的精度和效率方面都优于JEA方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.40
自引率
4.20%
发文量
21
期刊介绍: Journal of Educational and Behavioral Statistics, sponsored jointly by the American Educational Research Association and the American Statistical Association, publishes articles that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also of interest. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority. The Journal of Educational and Behavioral Statistics provides an outlet for papers that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis, provide properties of these methods, and an example of use in education or behavioral research. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also sometimes accepted. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority.
期刊最新文献
Improving Balance in Educational Measurement: A Legacy of E. F. Lindquist A Simple Technique Assessing Ordinal and Disordinal Interaction Effects A Comparison of Latent Semantic Analysis and Latent Dirichlet Allocation in Educational Measurement Sample Size Calculation and Optimal Design for Multivariate Regression-Based Norming Corrigendum to Power Approximations for Overall Average Effects in Meta-Analysis With Dependent Effect Sizes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1