Jaydan I. Aguilar, Milette U. Mendoza-Pascual, K. Padilla, R. D. Papa, N. Okuda
{"title":"Mixing regimes in a cluster of seven maar lakes in tropical monsoon Asia","authors":"Jaydan I. Aguilar, Milette U. Mendoza-Pascual, K. Padilla, R. D. Papa, N. Okuda","doi":"10.1080/20442041.2023.2167484","DOIUrl":null,"url":null,"abstract":"ABSTRACT The 7 maar lakes of San Pablo are a cluster of small volcanic lakes on Luzon Island, Philippines. These lakes, which are heavily utilized for aquaculture and ecotourism, usually experience fish kills that coincide with the northeast monsoon (NEM). This study explores limnophysical processes, particularly mixing regimes, in the lakes in relation to prevailing monsoons. We monitored monthly vertical and seasonal profiles of water temperature, salinity, conductivity, and dissolved oxygen from October 2016 to December 2018. Three types of mixing regimes were observed among the lakes, which have similar surface areas but different depths: polymixis in the shallowest; warm monomixis in lakes with intermediate depth; and meromixis in the deepest. A boundary between monomixis and meromixis was identified between 36 and 62 m depth. Monthly monitoring showed seasonal mixing occurred exclusively during the NEM (Nov–Apr). We also incorporated meteorological data into the model and performed multiple regression analysis for each lake to determine the best predictor: lake stability, as indicated by the Schmidt stability (ST ). A between-lake comparison showed lake stability was strongly correlated with both air temperature and wind speed, suggesting these 2 meteorological variables are involved in establishing thermal stratification in the lakes during the southwest monsoon. This study provides insights for adaptive lake management and projections of climate impacts on these understudied tropical lake ecosystems in Southeast Asia.","PeriodicalId":49061,"journal":{"name":"Inland Waters","volume":"13 1","pages":"47 - 61"},"PeriodicalIF":2.7000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inland Waters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/20442041.2023.2167484","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT The 7 maar lakes of San Pablo are a cluster of small volcanic lakes on Luzon Island, Philippines. These lakes, which are heavily utilized for aquaculture and ecotourism, usually experience fish kills that coincide with the northeast monsoon (NEM). This study explores limnophysical processes, particularly mixing regimes, in the lakes in relation to prevailing monsoons. We monitored monthly vertical and seasonal profiles of water temperature, salinity, conductivity, and dissolved oxygen from October 2016 to December 2018. Three types of mixing regimes were observed among the lakes, which have similar surface areas but different depths: polymixis in the shallowest; warm monomixis in lakes with intermediate depth; and meromixis in the deepest. A boundary between monomixis and meromixis was identified between 36 and 62 m depth. Monthly monitoring showed seasonal mixing occurred exclusively during the NEM (Nov–Apr). We also incorporated meteorological data into the model and performed multiple regression analysis for each lake to determine the best predictor: lake stability, as indicated by the Schmidt stability (ST ). A between-lake comparison showed lake stability was strongly correlated with both air temperature and wind speed, suggesting these 2 meteorological variables are involved in establishing thermal stratification in the lakes during the southwest monsoon. This study provides insights for adaptive lake management and projections of climate impacts on these understudied tropical lake ecosystems in Southeast Asia.
期刊介绍:
Inland Waters is the peer-reviewed, scholarly outlet for original papers that advance science within the framework of the International Society of Limnology (SIL). The journal promotes understanding of inland aquatic ecosystems and their management. Subject matter parallels the content of SIL Congresses, and submissions based on presentations are encouraged.
All aspects of physical, chemical, and biological limnology are appropriate, as are papers on applied and regional limnology. The journal also aims to publish articles resulting from plenary lectures presented at SIL Congresses and occasional synthesis articles, as well as issues dedicated to a particular theme, specific water body, or aquatic ecosystem in a geographical area. Publication in the journal is not restricted to SIL members.