Wendi Liu, S. Longshaw, A. Skillen, D. Emerson, C. Valente, F. Gambioli
{"title":"A High-performance Open-source Solution for Multiphase Fluid-Structure Interaction","authors":"Wendi Liu, S. Longshaw, A. Skillen, D. Emerson, C. Valente, F. Gambioli","doi":"10.17736/ijope.2022.jc844","DOIUrl":null,"url":null,"abstract":"A multiphase FSI framework using only open-source software has been developed, utilising components able to run on high-performance computing platforms. A partitioned approach is employed, ensuring a separation of concerns (fluid, structure and coupling), allowing design flexibility and robustness while reducing future maintenance efforts. Multiphase FSI test cases have been simulated and compared with published results and show good agreement. Simulation of a model representing an elastic aircraft wing with a fluid (fuel) sloshing inside is presented. This demonstrates the ability of this multiphase FSI framework in simulating complex and challenging cases involving a free liquid surface.","PeriodicalId":50302,"journal":{"name":"International Journal of Offshore and Polar Engineering","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Offshore and Polar Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.17736/ijope.2022.jc844","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 4
Abstract
A multiphase FSI framework using only open-source software has been developed, utilising components able to run on high-performance computing platforms. A partitioned approach is employed, ensuring a separation of concerns (fluid, structure and coupling), allowing design flexibility and robustness while reducing future maintenance efforts. Multiphase FSI test cases have been simulated and compared with published results and show good agreement. Simulation of a model representing an elastic aircraft wing with a fluid (fuel) sloshing inside is presented. This demonstrates the ability of this multiphase FSI framework in simulating complex and challenging cases involving a free liquid surface.
期刊介绍:
The primary aim of the IJOPE is to serve engineers and researchers worldwide by disseminating technical information of permanent interest in the fields of offshore, ocean, polar energy/resources and materials engineering. The IJOPE is the principal periodical of The International Society of Offshore and Polar Engineers (ISOPE), which is very active in the dissemination of technical information and organization of symposia and conferences in these fields throughout the world.
Theoretical, experimental and engineering research papers are welcome. Brief reports of research results or outstanding engineering achievements of likely interest to readers will be published in the Technical Notes format.