Pavan K Inguva, L. Mason, Indranil Pan, Miselle Hengardi, O. Matar
{"title":"Numerical simulation, clustering, and prediction of multicomponent polymer precipitation","authors":"Pavan K Inguva, L. Mason, Indranil Pan, Miselle Hengardi, O. Matar","doi":"10.1017/dce.2020.14","DOIUrl":null,"url":null,"abstract":"Abstract Multicomponent polymer systems are of interest in organic photovoltaic and drug delivery applications, among others where diverse morphologies influence performance. An improved understanding of morphology classification, driven by composition-informed prediction tools, will aid polymer engineering practice. We use a modified Cahn–Hilliard model to simulate polymer precipitation. Such physics-based models require high-performance computations that prevent rapid prototyping and iteration in engineering settings. To reduce the required computational costs, we apply machine learning (ML) techniques for clustering and consequent prediction of the simulated polymer-blend images in conjunction with simulations. Integrating ML and simulations in such a manner reduces the number of simulations needed to map out the morphology of polymer blends as a function of input parameters and also generates a data set which can be used by others to this end. We explore dimensionality reduction, via principal component analysis and autoencoder techniques, and analyze the resulting morphology clusters. Supervised ML using Gaussian process classification was subsequently used to predict morphology clusters according to species molar fraction and interaction parameter inputs. Manual pattern clustering yielded the best results, but ML techniques were able to predict the morphology of polymer blends with ≥90% accuracy.","PeriodicalId":34169,"journal":{"name":"DataCentric Engineering","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2020-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/dce.2020.14","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DataCentric Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/dce.2020.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 4
Abstract
Abstract Multicomponent polymer systems are of interest in organic photovoltaic and drug delivery applications, among others where diverse morphologies influence performance. An improved understanding of morphology classification, driven by composition-informed prediction tools, will aid polymer engineering practice. We use a modified Cahn–Hilliard model to simulate polymer precipitation. Such physics-based models require high-performance computations that prevent rapid prototyping and iteration in engineering settings. To reduce the required computational costs, we apply machine learning (ML) techniques for clustering and consequent prediction of the simulated polymer-blend images in conjunction with simulations. Integrating ML and simulations in such a manner reduces the number of simulations needed to map out the morphology of polymer blends as a function of input parameters and also generates a data set which can be used by others to this end. We explore dimensionality reduction, via principal component analysis and autoencoder techniques, and analyze the resulting morphology clusters. Supervised ML using Gaussian process classification was subsequently used to predict morphology clusters according to species molar fraction and interaction parameter inputs. Manual pattern clustering yielded the best results, but ML techniques were able to predict the morphology of polymer blends with ≥90% accuracy.