Emre Kişi, M. Sarduvan, H. Özdemir, Nurgül Kalaycı
{"title":"On the spectrum of linear combinations of finitely many diagonalizable matrices that mutually commute","authors":"Emre Kişi, M. Sarduvan, H. Özdemir, Nurgül Kalaycı","doi":"10.1515/spma-2020-0138","DOIUrl":null,"url":null,"abstract":"Abstract We propose an algorithm, which is based on the method given by Kişi and Özdemir in [Math Commun, 23 (2018) 61], to handle the problem of when a linear combination matrix X=∑i=1mciXiX = \\sum\\nolimits_{i = 1}^m {{c_i}{X_i}} is a matrix such that its spectrum is a subset of a particular set, where ci, i = 1, 2, ..., m, are nonzero scalars and Xi, i = 1, 2, ..., m, are mutually commuting diagonalizable matrices. Besides, Mathematica implementation codes of the algorithm are also provided. The problems of characterizing all situations in which a linear combination of some special matrices, e.g. the matrices that coincide with some of their powers, is also a special matrix can easily be solved via the algorithm by choosing of the spectra of the matrices X and Xi, i = 1, 2, ..., m, as subsets of some particular sets. Nine of the open problems in the literature are solved by utilizing the algorithm. The results of the four of them, i.e. cubicity of linear combinations of two commuting cubic matrices, quadripotency of linear combinations of two commuting quadripotent matrices, tripotency of linear combinations of three mutually commuting tripotent matrices, and tripotency of linear combinations of four mutually commuting involutive matrices, are presented explicitly in this work. Due to the length of their presentations, the results of the five of them, i.e. quadraticity of linear combinations of three or four mutually commuting quadratic matrices, cubicity of linear combinations of three mutually commuting cubic matrices, quadripotency of linear combinations of three mutually commuting quadripotent matrices, and tripotency of linear combinations of four mutually commuting tripotent matrices, are given as program outputs only. The results obtained are extensions and/or generalizations of some of the results in the literature.","PeriodicalId":43276,"journal":{"name":"Special Matrices","volume":"9 1","pages":"305 - 320"},"PeriodicalIF":0.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/spma-2020-0138","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Matrices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/spma-2020-0138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract We propose an algorithm, which is based on the method given by Kişi and Özdemir in [Math Commun, 23 (2018) 61], to handle the problem of when a linear combination matrix X=∑i=1mciXiX = \sum\nolimits_{i = 1}^m {{c_i}{X_i}} is a matrix such that its spectrum is a subset of a particular set, where ci, i = 1, 2, ..., m, are nonzero scalars and Xi, i = 1, 2, ..., m, are mutually commuting diagonalizable matrices. Besides, Mathematica implementation codes of the algorithm are also provided. The problems of characterizing all situations in which a linear combination of some special matrices, e.g. the matrices that coincide with some of their powers, is also a special matrix can easily be solved via the algorithm by choosing of the spectra of the matrices X and Xi, i = 1, 2, ..., m, as subsets of some particular sets. Nine of the open problems in the literature are solved by utilizing the algorithm. The results of the four of them, i.e. cubicity of linear combinations of two commuting cubic matrices, quadripotency of linear combinations of two commuting quadripotent matrices, tripotency of linear combinations of three mutually commuting tripotent matrices, and tripotency of linear combinations of four mutually commuting involutive matrices, are presented explicitly in this work. Due to the length of their presentations, the results of the five of them, i.e. quadraticity of linear combinations of three or four mutually commuting quadratic matrices, cubicity of linear combinations of three mutually commuting cubic matrices, quadripotency of linear combinations of three mutually commuting quadripotent matrices, and tripotency of linear combinations of four mutually commuting tripotent matrices, are given as program outputs only. The results obtained are extensions and/or generalizations of some of the results in the literature.
期刊介绍:
Special Matrices publishes original articles of wide significance and originality in all areas of research involving structured matrices present in various branches of pure and applied mathematics and their noteworthy applications in physics, engineering, and other sciences. Special Matrices provides a hub for all researchers working across structured matrices to present their discoveries, and to be a forum for the discussion of the important issues in this vibrant area of matrix theory. Special Matrices brings together in one place major contributions to structured matrices and their applications. All the manuscripts are considered by originality, scientific importance and interest to a general mathematical audience. The journal also provides secure archiving by De Gruyter and the independent archiving service Portico.