Bayesian and Classical Estimation of Strength-Stress Reliability for Gompertz Distribution Based on Upper Record Values

IF 0.4 Q4 MATHEMATICS Journal of Mathematical Extension Pub Date : 2021-11-01 DOI:10.30495/JME.V0I0.1585
َAbuzar Hemmati, Z. Khodadadi, K. Zare, H. Jafarpour
{"title":"Bayesian and Classical Estimation of Strength-Stress Reliability for Gompertz Distribution Based on Upper Record Values","authors":"َAbuzar Hemmati, Z. Khodadadi, K. Zare, H. Jafarpour","doi":"10.30495/JME.V0I0.1585","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the problem of estimating stress-strength reliability R=P(X>Y)  for Gompertz lifetime models having the same shape parameters but different scale parameters under a set of upper record values. We obtain the maximum likelihood estimator (MLE), the approximate Bayes estimator and the exact confidence intervals of stress-strength reliability when the shape parameter is known. Also, when the shape parameter is unknown, the MLE, the asymptotic confidence interval and some bootstrap confidence intervals of stress-strength reliability are studied. Furthermore, a Bayesian approach is proposed for estimating the parameters and then the corresponding credible interval are achieved using Gibbs sampling technique via OpenBUGS software. Monte Carlo simulations are performed to compare the performance of different proposed estimation methods.","PeriodicalId":43745,"journal":{"name":"Journal of Mathematical Extension","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Extension","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30495/JME.V0I0.1585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the problem of estimating stress-strength reliability R=P(X>Y)  for Gompertz lifetime models having the same shape parameters but different scale parameters under a set of upper record values. We obtain the maximum likelihood estimator (MLE), the approximate Bayes estimator and the exact confidence intervals of stress-strength reliability when the shape parameter is known. Also, when the shape parameter is unknown, the MLE, the asymptotic confidence interval and some bootstrap confidence intervals of stress-strength reliability are studied. Furthermore, a Bayesian approach is proposed for estimating the parameters and then the corresponding credible interval are achieved using Gibbs sampling technique via OpenBUGS software. Monte Carlo simulations are performed to compare the performance of different proposed estimation methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于上记录值的Gompertz分布强度-应力可靠度的贝叶斯和经典估计
本文研究了具有相同形状参数但不同尺度参数的Gompertz寿命模型在一组上记录值下的应力-强度可靠性R=P(X>Y)估计问题。得到了形状参数已知时的最大似然估计量(MLE)、近似贝叶斯估计量和应力-强度可靠度的精确置信区间。在形状参数未知的情况下,研究了应力-强度可靠性的最大似然值、渐近置信区间和一些自举置信区间。在此基础上,提出了一种贝叶斯估计方法,并通过OpenBUGS软件利用Gibbs采样技术得到了相应的可信区间。通过蒙特卡罗仿真比较了不同估计方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
68
审稿时长
24 weeks
期刊最新文献
Monotonic Solutions of Second Order Nonlinear Difference Equations Statistical Inference on 2-Component Mixture of Topp-Leone Distribution, Bayesian and non-Bayesian Estimation $\delta (2)$-ideal Euclidean hypersurfaces of null $L_1$-2-type Constructing a Heyting semilattice that has Wajesberg property by using fuzzy implicative deductive systems of Hoops Inverse eigenvalue problem of bisymmetric nonnegative matrices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1