{"title":"Copper(II) sulfide nanostructures and its nanohybrids: recent trends, future perspectives and current challenges","authors":"Narinder Singh","doi":"10.1007/s11706-023-0632-1","DOIUrl":null,"url":null,"abstract":"<div><p>Among various metal chalcogenides, metal oxides and phases of copper sulfide, copper(II) sulfide (covellite, CuS) nanostructures have enjoyed special attentiveness from researchers and scientists across the world owing to their complicated structure, peculiar composition and valency, attractive and panoramic morphologies, optical and electrical conductivity, less toxicity, and biocompatibility that can be exploited in advanced and technological applications. This review paper presents a brief idea about crystal structure, composition, and various chemical methods. The mechanism and effect of reaction parameters on the evolution of versatile and attractive morphologies have been described. Physical properties of CuS and its hybrid nanostructures, such as morphology and optical, mechanical, electrical, thermal, and thermoelectrical properties, have been carefully reviewed. A concise account of CuS and its hybrid nanostructures’ diverse applications in emerging and recent applications such as energy storage devices (lithium-ion batteries, supercapacitance), sensors, field emission, photovoltaic cells, organic pollutant removal, electromagnetic wave absorption, and emerging biomedical field (drug delivery, photothermal ablation, deoxyribonucleic acid detection, anti-microbial and theranostic) has also been elucidated. Finally, the prospects, scope, and challenges of CuS nanostructures have been discussed precisely.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"17 3","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-023-0632-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Among various metal chalcogenides, metal oxides and phases of copper sulfide, copper(II) sulfide (covellite, CuS) nanostructures have enjoyed special attentiveness from researchers and scientists across the world owing to their complicated structure, peculiar composition and valency, attractive and panoramic morphologies, optical and electrical conductivity, less toxicity, and biocompatibility that can be exploited in advanced and technological applications. This review paper presents a brief idea about crystal structure, composition, and various chemical methods. The mechanism and effect of reaction parameters on the evolution of versatile and attractive morphologies have been described. Physical properties of CuS and its hybrid nanostructures, such as morphology and optical, mechanical, electrical, thermal, and thermoelectrical properties, have been carefully reviewed. A concise account of CuS and its hybrid nanostructures’ diverse applications in emerging and recent applications such as energy storage devices (lithium-ion batteries, supercapacitance), sensors, field emission, photovoltaic cells, organic pollutant removal, electromagnetic wave absorption, and emerging biomedical field (drug delivery, photothermal ablation, deoxyribonucleic acid detection, anti-microbial and theranostic) has also been elucidated. Finally, the prospects, scope, and challenges of CuS nanostructures have been discussed precisely.
期刊介绍:
Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community.
The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to):
Biomaterials including biomimetics and biomineralization;
Nano materials;
Polymers and composites;
New metallic materials;
Advanced ceramics;
Materials modeling and computation;
Frontier materials synthesis and characterization;
Novel methods for materials manufacturing;
Materials performance;
Materials applications in energy, information and biotechnology.