Thermodynamic analysis of modular high-temperature nuclear reactor coupled with the steam cycle for power generation

IF 0.8 Q4 THERMODYNAMICS Archives of Thermodynamics Pub Date : 2023-07-20 DOI:10.24425/ather.2019.130007
M. Dudek, M. Jaszczur, Z. Kolenda
{"title":"Thermodynamic analysis of modular high-temperature nuclear reactor coupled with the steam cycle for power generation","authors":"M. Dudek, M. Jaszczur, Z. Kolenda","doi":"10.24425/ather.2019.130007","DOIUrl":null,"url":null,"abstract":"Consumption of energy is one of the important indicators in developing countries, but a lot of companies from the energy sector have to cope with three key challenges, namely how to reduce their impact on the environment, how to ensure the low cost of the energy production and how to improve the system overall performance? For Polish energy market, the number of challenges is greater. The growing demand for electricity and contemporary development of nuclear power technology allow today’s design, implement new solutions for high energy conversion system low unit cost for energy and fuel production. In the present paper, numerical analysis of modular high-temperature nuclear reactor coupled with the steam cycle for electricity production has been presented. The analysed system consists of three independent cycles. The first two are high-temperature nuclear reactor cycles which are equipped with two high-temperature nuclear reactors, heat exchangers, blowers, steam generators. The third cycle is a Rankine cycle which is equipped with up to four steam turbines, that operate in the heat recovery system. The analysis of such a system shows that is possible to achieve significantly greater efficiency than offered by traditional nuclear reactor technology.","PeriodicalId":45257,"journal":{"name":"Archives of Thermodynamics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Thermodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ather.2019.130007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 1

Abstract

Consumption of energy is one of the important indicators in developing countries, but a lot of companies from the energy sector have to cope with three key challenges, namely how to reduce their impact on the environment, how to ensure the low cost of the energy production and how to improve the system overall performance? For Polish energy market, the number of challenges is greater. The growing demand for electricity and contemporary development of nuclear power technology allow today’s design, implement new solutions for high energy conversion system low unit cost for energy and fuel production. In the present paper, numerical analysis of modular high-temperature nuclear reactor coupled with the steam cycle for electricity production has been presented. The analysed system consists of three independent cycles. The first two are high-temperature nuclear reactor cycles which are equipped with two high-temperature nuclear reactors, heat exchangers, blowers, steam generators. The third cycle is a Rankine cycle which is equipped with up to four steam turbines, that operate in the heat recovery system. The analysis of such a system shows that is possible to achieve significantly greater efficiency than offered by traditional nuclear reactor technology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模块化高温核反应堆和蒸汽循环耦合发电的热力学分析
能源消耗是发展中国家的重要指标之一,但许多能源部门的公司必须应对三个关键挑战,即如何减少对环境的影响,如何确保能源生产的低成本,以及如何提高系统的整体性能?对于波兰能源市场来说,挑战的数量更大。电力需求的不断增长和核能技术的当代发展,使得今天的高能量转换系统的设计和实施成为可能,而能源和燃料生产的单位成本较低。本文对用于发电的模块化高温核反应堆和蒸汽循环耦合进行了数值分析。被分析的系统由三个独立的循环组成。前两个是高温核反应堆循环,配备了两个高温核反应堆、热交换器、鼓风机和蒸汽发生器。第三个循环是兰金循环,它配备了多达四台蒸汽轮机,在热回收系统中运行。对这种系统的分析表明,有可能实现比传统核反应堆技术高得多的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Archives of Thermodynamics
Archives of Thermodynamics THERMODYNAMICS-
CiteScore
1.80
自引率
22.20%
发文量
0
期刊介绍: The aim of the Archives of Thermodynamics is to disseminate knowledge between scientists and engineers interested in thermodynamics and heat transfer and to provide a forum for original research conducted in Central and Eastern Europe, as well as all over the world. The journal encompass all aspect of the field, ranging from classical thermodynamics, through conduction heat transfer to thermodynamic aspects of multiphase flow. Both theoretical and applied contributions are welcome. Only original papers written in English are consider for publication.
期刊最新文献
Thermal simulation of a continuous casting process subjected to water-sprays cooling Reduction of carbon footprint from spark ignition power facilities by the dual approach Modeling of the internal combustion engine cooling system Challenges in operating and testing loop heat pipes in 500–700 K temperature ranges Simplified exergy analysis of ship heating systems with different heat carriers and with the recovery of waste heat
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1