Agroinfiltration-based efficient transient protein expression in leguminous plants.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2019-06-25 DOI:10.5511/PLANTBIOTECHNOLOGY.19.0220B
Takuya Suzaki, Mai Tsuda, H. Ezura, B. Day, K. Miura
{"title":"Agroinfiltration-based efficient transient protein expression in leguminous plants.","authors":"Takuya Suzaki, Mai Tsuda, H. Ezura, B. Day, K. Miura","doi":"10.5511/PLANTBIOTECHNOLOGY.19.0220B","DOIUrl":null,"url":null,"abstract":"Transient protein expression is an effective tool to rapidly unravel novel gene functions, such as transcriptional activity of promoters and sub-cellular localization of proteins. However, transient expression is not applicable to some species and varieties because of insufficient expression levels. We recently developed one of the strongest agroinfiltration-based transient protein expression systems for plant cells, termed 'Tsukuba system.' About 4 mg/g fresh weight of protein expression in Nicotiana benthamiana was obtained using this system. The vector pBYR2HS, which contains a geminiviral replication system and a double terminator, can be used in various plant species and varieties, including lettuces, eggplants, tomatoes, hot peppers, and orchids. In this study, we assessed the applicability of the Tsukuba system to several species of legumes, including Lotus japonicus, soybean Glycine max, and common bean Phaseolus vulgaris. The GFP protein was transiently expressed in the seedpods of all examined legume species, however, protein expression in leaves was observed only in P. vulgaris. Taken together, our system is an effective tool to examine gene function rapidly in several legume species based on transient protein expression.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2019-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5511/PLANTBIOTECHNOLOGY.19.0220B","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5511/PLANTBIOTECHNOLOGY.19.0220B","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 17

Abstract

Transient protein expression is an effective tool to rapidly unravel novel gene functions, such as transcriptional activity of promoters and sub-cellular localization of proteins. However, transient expression is not applicable to some species and varieties because of insufficient expression levels. We recently developed one of the strongest agroinfiltration-based transient protein expression systems for plant cells, termed 'Tsukuba system.' About 4 mg/g fresh weight of protein expression in Nicotiana benthamiana was obtained using this system. The vector pBYR2HS, which contains a geminiviral replication system and a double terminator, can be used in various plant species and varieties, including lettuces, eggplants, tomatoes, hot peppers, and orchids. In this study, we assessed the applicability of the Tsukuba system to several species of legumes, including Lotus japonicus, soybean Glycine max, and common bean Phaseolus vulgaris. The GFP protein was transiently expressed in the seedpods of all examined legume species, however, protein expression in leaves was observed only in P. vulgaris. Taken together, our system is an effective tool to examine gene function rapidly in several legume species based on transient protein expression.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
豆科植物中基于农业浸润的瞬时蛋白高效表达。
瞬时蛋白表达是快速揭示新基因功能的有效工具,如启动子的转录活性和蛋白质的亚细胞定位。然而,由于某些物种和品种的表达水平不足,瞬时表达并不适用。我们最近开发了一种最强大的基于农业浸润的植物细胞瞬时蛋白表达系统,称为“筑波系统”。本烟中蛋白表达量约为4 mg/g。载体pBYR2HS包含双病毒复制系统和双终止子,可用于各种植物物种和品种,包括生菜、茄子、西红柿、辣椒和兰花。在本研究中,我们评估了筑波系统对几种豆科植物的适用性,包括日本莲子、大豆甘氨酸和普通豆菜豆。GFP蛋白在所有豆科植物的种子中均有短暂表达,而在豆科植物叶片中均有表达。综上所述,我们的系统是一种基于瞬时蛋白表达快速检测几种豆科植物基因功能的有效工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1