{"title":"Dielectric patch resonator and antenna","authors":"Jianxin Chen, Xue‐Ying Wang, Shichang Tang, Yongle Wu","doi":"10.23919/JCC.fa.2021-0507.202308","DOIUrl":null,"url":null,"abstract":"This paper presents an overview of dielectric patch (DP) antennas developed in recent years. The employed DP resonator composed of a DP and a bottom substrate is analyzed comprehensively here, enabling the easy realization of a quasi-planar DP antenna. It combines the dual advantages of the conventional microstrip patch (MP) antenna and dielectric resonator (DR) antenna in terms of profile, gain, bandwidth, radiation efficiency, and design freedom. Furthermore, the DP antenna inherits the multi-mode characteristic of the DR antenna, thus it has a large number of high-order modes, including TMmn mode and TEmn mode. The high-order modes are widely applied, for example, by combining with the dominantTMio mode to expand the bandwidth, or selecting multiple higher-order modes to implement a high-gain antenna. Additionally, the non-radiation high-order modes are also utilized to produce natural radiation null in filtering antenna design. In this paper, the design theories and techniques of DP antenna are introduced and investigated, including calculation and control methods of the resonant mode frequencies, analysis of the radiation mechanism, and applications of the multi-mode characteristic. This overview could provide guidance for the subsequent antenna design, thus effectively avoid time-consuming optimization.","PeriodicalId":9814,"journal":{"name":"China Communications","volume":"20 1","pages":"209-219"},"PeriodicalIF":3.1000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.23919/JCC.fa.2021-0507.202308","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an overview of dielectric patch (DP) antennas developed in recent years. The employed DP resonator composed of a DP and a bottom substrate is analyzed comprehensively here, enabling the easy realization of a quasi-planar DP antenna. It combines the dual advantages of the conventional microstrip patch (MP) antenna and dielectric resonator (DR) antenna in terms of profile, gain, bandwidth, radiation efficiency, and design freedom. Furthermore, the DP antenna inherits the multi-mode characteristic of the DR antenna, thus it has a large number of high-order modes, including TMmn mode and TEmn mode. The high-order modes are widely applied, for example, by combining with the dominantTMio mode to expand the bandwidth, or selecting multiple higher-order modes to implement a high-gain antenna. Additionally, the non-radiation high-order modes are also utilized to produce natural radiation null in filtering antenna design. In this paper, the design theories and techniques of DP antenna are introduced and investigated, including calculation and control methods of the resonant mode frequencies, analysis of the radiation mechanism, and applications of the multi-mode characteristic. This overview could provide guidance for the subsequent antenna design, thus effectively avoid time-consuming optimization.
期刊介绍:
China Communications (ISSN 1673-5447) is an English-language monthly journal cosponsored by the China Institute of Communications (CIC) and IEEE Communications Society (IEEE ComSoc). It is aimed at readers in industry, universities, research and development organizations, and government agencies in the field of Information and Communications Technologies (ICTs) worldwide.
The journal's main objective is to promote academic exchange in the ICTs sector and publish high-quality papers to contribute to the global ICTs industry. It provides instant access to the latest articles and papers, presenting leading-edge research achievements, tutorial overviews, and descriptions of significant practical applications of technology.
China Communications has been indexed in SCIE (Science Citation Index-Expanded) since January 2007. Additionally, all articles have been available in the IEEE Xplore digital library since January 2013.