Isaac Kofi Nti, O. Nyarko-Boateng, J. Aning, G. Fosu, Henrietta Adjei Pokuaa, F. Kyeremeh
{"title":"Early Detection of Stroke for Ensuring Health and Well-Being Based on Categorical Gradient Boosting Machine","authors":"Isaac Kofi Nti, O. Nyarko-Boateng, J. Aning, G. Fosu, Henrietta Adjei Pokuaa, F. Kyeremeh","doi":"10.5614/itbj.ict.res.appl.2022.16.3.8","DOIUrl":null,"url":null,"abstract":"Stroke is believed to be among the leading causes of adult disability worldwide. It is wreaking havoc on African people, families, and governments, with ramifications for the continent’s socio-economic development. On the other hand, stroke research output is insufficient, resulting in a dearth of evidence-based and context-driven guidelines and strategies to combat the region’s expanding stroke burden. Indeed, for African and other developing economies to meet the UN Sustainable Development Goals (SDGs), particularly SDG 3, which aims to guarantee healthy lifestyles and promote well-being for people of all ages, the issue of stroke must be addressed to reduce early death from non-communicable illnesses. This study sought to create a robust predictive model for early stroke diagnosis using an understandable machine learning (ML) technique. We implemented a categorical gradient boosting machine model for early stroke prediction to protect patients’ health and well-being. We compared the effectiveness of our proposed model to existing state-of-the-art machine learning models and previous studies by empirically testing it on a real-world public stroke dataset. The proposed model outperformed the others when compared to the other methods using the research data, achieving the maximum accuracy (96.56%), the area under the curve (AUC) (99.73%), F1-measure (96.68%), recall (99.24%), and precision (93.57%). Functional outcome prediction models based on machine learning for stroke were verified and shown to be adaptable and helpful.","PeriodicalId":42785,"journal":{"name":"Journal of ICT Research and Applications","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ICT Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/itbj.ict.res.appl.2022.16.3.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2
Abstract
Stroke is believed to be among the leading causes of adult disability worldwide. It is wreaking havoc on African people, families, and governments, with ramifications for the continent’s socio-economic development. On the other hand, stroke research output is insufficient, resulting in a dearth of evidence-based and context-driven guidelines and strategies to combat the region’s expanding stroke burden. Indeed, for African and other developing economies to meet the UN Sustainable Development Goals (SDGs), particularly SDG 3, which aims to guarantee healthy lifestyles and promote well-being for people of all ages, the issue of stroke must be addressed to reduce early death from non-communicable illnesses. This study sought to create a robust predictive model for early stroke diagnosis using an understandable machine learning (ML) technique. We implemented a categorical gradient boosting machine model for early stroke prediction to protect patients’ health and well-being. We compared the effectiveness of our proposed model to existing state-of-the-art machine learning models and previous studies by empirically testing it on a real-world public stroke dataset. The proposed model outperformed the others when compared to the other methods using the research data, achieving the maximum accuracy (96.56%), the area under the curve (AUC) (99.73%), F1-measure (96.68%), recall (99.24%), and precision (93.57%). Functional outcome prediction models based on machine learning for stroke were verified and shown to be adaptable and helpful.
期刊介绍:
Journal of ICT Research and Applications welcomes full research articles in the area of Information and Communication Technology from the following subject areas: Information Theory, Signal Processing, Electronics, Computer Network, Telecommunication, Wireless & Mobile Computing, Internet Technology, Multimedia, Software Engineering, Computer Science, Information System and Knowledge Management. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.