Bio-inspired ionic skins for smart medicine.

Smart medicine Pub Date : 2023-02-12 eCollection Date: 2023-02-01 DOI:10.1002/SMMD.20220026
Zhouyue Lei, Wentao Xu, Guogao Zhang
{"title":"Bio-inspired ionic skins for smart medicine.","authors":"Zhouyue Lei, Wentao Xu, Guogao Zhang","doi":"10.1002/SMMD.20220026","DOIUrl":null,"url":null,"abstract":"<p><p>Ionic skins are developed to mimic the mechanical properties and functions of natural skins. They have demonstrated substantial advantages to serve as the crucial interface to bridge the gap between humans and machines. The first-generation ionic skin is a stretchable capacitor comprising hydrogels as the ionic conductors and elastomers as the dielectrics, and realizes pressure and strain sensing through the measurement of the capacitance. Subsequent advances have been made to improve the mechanical properties of ionic skins and import diverse functions. For example, ultrahigh stretchability, strong interfacial adhesion, self-healing, moisturizing ability, and various sensing capabilities have been achieved separately or simultaneously. Most ionic skins are attached to natural skins to monitor bio-electrical signals continuously. Ionic skins have also been found with significant potential to serve as a smart drug-containing reservoir, which can release drugs spatially, temporally, and in a controllable way. Herein, this review focuses on the design and fabrication of ionic skins, and their applications related to smart medicine. Moreover, challenges and opportunities are also discussed. It is hoped that the development of bio-inspired ionic skins will provide a paradigm shift for self-diagnosis and healthcare.</p>","PeriodicalId":74816,"journal":{"name":"Smart medicine","volume":" ","pages":"e20220026"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11235715/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/SMMD.20220026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ionic skins are developed to mimic the mechanical properties and functions of natural skins. They have demonstrated substantial advantages to serve as the crucial interface to bridge the gap between humans and machines. The first-generation ionic skin is a stretchable capacitor comprising hydrogels as the ionic conductors and elastomers as the dielectrics, and realizes pressure and strain sensing through the measurement of the capacitance. Subsequent advances have been made to improve the mechanical properties of ionic skins and import diverse functions. For example, ultrahigh stretchability, strong interfacial adhesion, self-healing, moisturizing ability, and various sensing capabilities have been achieved separately or simultaneously. Most ionic skins are attached to natural skins to monitor bio-electrical signals continuously. Ionic skins have also been found with significant potential to serve as a smart drug-containing reservoir, which can release drugs spatially, temporally, and in a controllable way. Herein, this review focuses on the design and fabrication of ionic skins, and their applications related to smart medicine. Moreover, challenges and opportunities are also discussed. It is hoped that the development of bio-inspired ionic skins will provide a paradigm shift for self-diagnosis and healthcare.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于智能医疗的仿生离子皮肤
离子皮肤是为了模仿自然皮肤的机械性能和功能而开发的。它们已经证明了作为弥合人与机器之间差距的关键接口的巨大优势。第一代离子皮肤是一种以水凝胶为离子导体,弹性体为介电体的可拉伸电容器,通过测量电容实现压力和应变传感。在提高离子蒙皮的力学性能和引入多种功能方面取得了进一步的进展。例如,超高拉伸性、强界面附着力、自修复、保湿能力和各种传感能力已经单独或同时实现。大多数离子皮肤附着在天然皮肤上,以连续监测生物电信号。离子皮也被发现具有巨大的潜力,可以作为一种智能含药储存库,可以在空间、时间和可控的方式释放药物。本文就离子皮肤的设计、制备及其在智能医疗中的应用作一综述。此外,还讨论了挑战和机遇。希望生物启发离子皮肤的发展将为自我诊断和医疗保健提供范式转变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Polymeric silk fibroin hydrogel as a conductive and multifunctional adhesive for durable skin and epidermal electronics. Dear-PSM: A deep learning-based peptide search engine enables full database search for proteomics. Developing functional hydrogels for treatment of oral diseases Sustainable synthesis of carbon dots via bio‐waste recycling for biomedical imaging Engineering strategies for apoptotic bodies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1